
Simscape™ Driveline™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simscape™ Driveline™ User's Guide
© COPYRIGHT 2004–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2010 Online only New for Version 2.0 Beta (Release 2010b+)
April 2011 Online only Revised for Version 2.0 (Release 2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)
March 2014 Online only Revised for Version 2.6 (Release 2014a)
October 2014 Online only Revised for Version 2.7 (Release 2014b)
March 2015 Online only Revised for Version 2.8 (Release 2015a)
September 2015 Online only Revised for Version 2.9 (Release 2015b)
March 2016 Online only Revised for Version 2.10 (Release 2016a)

(Renamed from SimDriveline™ User’s Guide)
September 2016 Online only Revised for Version 2.11 (Release 2016b)
March 2017 Online only Revised for Version 2.12 (Release 2017a)
September 2017 Online only Revised for Version 2.13(Release 2017b)
March 2018 Online only Revised for Version 2.14 (Release 2018a)
September 2018 Online only Revised for Version 2.15 (Release 2018b)
March 2019 Online only Revised for Version 2.16 (Release 2019a)
September 2019 Online only Revised for Version 3.0 (Release 2019b)

Getting Started

Introducing Simscape Driveline Software
1

Simscape Driveline Product Description 1-2
Key Features . 1-2

Related Products . 1-3
Required Products . 1-3
Other Related Products . 1-3

Drivetrain Model . 1-4
What the Model Represents . 1-4
What the Model Illustrates . 1-4
Open CR-CR Transmission Example Model 1-6
Run the Model . 1-8
Modify the Model . 1-11

Capabilities of Simscape Driveline Software 1-18
What Simscape Driveline Software Contains 1-18
Model Driveline Systems . 1-19
Model Inertias and Gears . 1-20
Model Dynamic Driveline Elements 1-21
Model Custom Driveline Elements 1-21
Actuate and Sense Motion . 1-21
Simulate and Analyze Motion . 1-22

v

Contents

Modeling Driveline Systems
2

Start a New Simscape Driveline Model 2-2

Build a Drivetrain Model . 2-3

Complete Vehicle Model
3

Complete Vehicle Model . 3-2
Understanding the Global Structure of the Model 3-2
Model the Throttle/Brake Profile 3-3
Model the Engine . 3-3
Model the Transmission . 3-4
Couple the Engine to the Transmission 3-5
Model the Tires, Brakes, Wheels, and Road 3-6
Control the Clutches . 3-7
Run the Model . 3-9

Basic Motion, Torque, and Force Modeling
4

Couple Rotational Motion with Gears . 4-2
Gear Coupling Rules . 4-2

Couple Two Spinning Inertias with a Simple Gear 4-3
Modeling Two Spinning Inertias . 4-3
Coupling Two Spinning Inertias with a Simple Gear 4-6
Torque-Actuating Two Coupled, Spinning Inertias 4-7
Sensing and Actuating Motion and Torque 4-9

Couple Two Spinning Inertias with a Variable Ratio
Transmission . 4-11

Couple Three Spinning Inertias with a Planetary Gear 4-14

vi Contents

Driveline Actuation
5

Best Practices for Modeling Torque-Force Actuation and
Motion Actuation . 5-2

Actuate a Driveline Using Torques and Forces 5-3

Actuate a Driveline Using Motions . 5-4

Set Initial Conditions of Driveline Motion 5-5
Resolving Undetermined Motions in Complex Gears 5-5

Power Transmission Using Pulley Networks
6

Best Practices for Modeling Pulley Networks 6-2
Belt Direction . 6-2
Inertia . 6-3
Belt Tension . 6-3
Power Window System Pulley Mechanism 6-3

Gear Coupling Control Using Clutches
7

How a Clutch Works . 7-2

Model Friction Clutches at a Fundamental Level 7-3

Engage and Disengage Gears Using a Clutch 7-4
Simulate Gear Engagement and Disengagement 7-4
How the Clutch Mode Indicates Locking and Unlocking 7-8

Brake Motion Using Clutches . 7-9
Braking with a Two-Clutch System . 7-9

vii

Model Transmissions Using Gear Ratios and Clutch
Schedules

8
Transmission Design Principles and Best Practices 8-2

Model a Two-Speed Transmission with Braking 8-3
Setting Up the Gears, Clutches, and Brake 8-4
Controlling the Transmission State with a Clutch Schedule . . . 8-5
Adding Realistic Clutch Signals . 8-6

Model a CR-CR 4-Speed Transmission Driveline with Braking
. 8-7

Replacing Programmed with Manually Controlled Clutch
Pressures . 8-8

Modeling Driveline Components
9

Specialized and Customized Driveline Components 9-2
Optimal Physical Modeling in the Simscape Environment 9-2
Reasons for Specialized Driveline Components 9-2
Greater Model Fidelity and Performance 9-3

Rotational-Translational Couplings . 9-5
Convert Between Rotational and Translation Motion 9-5
Use Simscape and Simscape Driveline Elements to Couple

Rotation and Translation . 9-5

Modeling Transmissions . 9-7
Transmission Templates . 9-7
Transmission Ports . 9-7
Gear Input Signal . 9-7
Initial States . 9-8
Clutch Control . 9-9
Inertias and Friction Losses . 9-9
Real-Time Simulation . 9-10

viii Contents

Effective Inertias and Driveshafts
10

Model a Variable Inertia . 10-2

Model Driveshafts with Loss . 10-4

Specialized Gears
11

Custom Planetary Gear Model . 11-2

Model Gears with Losses . 11-4
Constant Efficiency . 11-4
Load-Dependent Efficiency . 11-5
Geometry-Dependent Efficiency . 11-5
Viscous Friction . 11-5

Constant and Load-Dependent Gear Efficiencies 11-6

Specialized Clutches
12

Clutches, Clutch-Like Elements, and Coulomb Friction 12-2

Model Clutches with Viscous Friction Loss 12-3
Creating a Torque Damping Subsystem 12-3
Connecting and Simulating the Damped Clutch System 12-4

Model Realistic Clutch Pressure Signals 12-8

Automatic Transmission with a Dual Clutch 12-9
Predefined Simulation Options . 12-10

ix

Control Vehicle Velocity
13

Control Vehicle Throttle Input Using a Powertrain Blockset
Driver . 13-2

Open-Loop Simulation Using a Signal Builder Block 13-2
Closed-Loop Simulation Using a Longitudinal Driver Block

. 13-4
Simulation Comparison . 13-10

Drivetrain Disturbances
14

Model Drivetrain Noise . 14-2

Model and Detect Drivetrain Faults . 14-13

Modeling Driveline Environments
15

Model a Road Profile with Varying Elevation and Friction . . . 15-2
Updates to the Original Model . 15-2
Run the Simulation . 15-9

Analyzing Driveline Models and Simulations
16

Driveline Simulation Performance . 16-2
About Simulation Performance . 16-2
Adjust Model Fidelity . 16-2
Improve Simulation Performance by Using the Partitioning

Solver . 16-3
Optimize Simulation of Stiff Drivelines 16-3

x Contents

Optimize Simulation of Clutches . 16-4

Resolve Partitioning Solver Simulation Issues for Simscape
Driveline Models . 16-7

Resolving Issues for Blocks with Stiffness or Friction 16-7
Using the Partitioning Solver . 16-7
Resolve Initial Condition Errors and Warnings 16-8
Reduce Chatter Due to Friction . 16-17
Resolve Chatter Due to Stiffness . 16-8

Driveline Degrees of Freedom . 16-38
About Driveline Degrees of Freedom and Constraints 16-38
Identify Degrees of Freedom . 16-38
Define Fundamental Degrees of Freedom 16-39
Define Connected Degrees of Freedom 16-41
Define Constrained Degrees of Freedom 16-42
Actuate, Sense, and Terminate Degrees of Freedom 16-46
Count Independent Degrees of Freedom 16-47
Count Degrees of Freedom in a Simple Driveline with a Clutch

. 16-48

Driveline States — Effect of Clutches 16-52
Driveline States and Degrees of Freedom 16-52
Find and Use Driveline States . 16-53

How Simscape Driveline Simulates a Drivetrain System . . . 16-55
About Simscape Driveline and Simscape Simulation 16-55
Clutch State Determination . 16-55

Model Thermal Losses in Driveline Components 16-56
Thermal Ports . 16-56
Thermal-Modeling Parameters . 16-57
Model Thermal Losses for a Simple Gear 16-57

Simscape Driveline Limitations . 16-64
Simscape Driveline and Simulink Limitations 16-64
Additional Simscape Driveline Limitations 16-64

xi

Real-Time Simulation
17

Prepare Simscape Driveline Models for Real-Time Simulation
Using Simscape Checks . 17-2

Troubleshoot Driveline Simulation Issues
18

Troubleshoot Driveline Modeling and Simulation Issues . . . 18-2

Troubleshoot Overconstrained and Conflicting Degrees of
Freedom . 18-3

Checking the Number of DoFs . 18-3
Checking the Consistency of DoFs . 18-3

Troubleshoot Clutch and Transmission Errors 18-4

Troubleshoot Inconsistent Initial Conditions 18-5

Troubleshoot Pulley Network Issues . 18-6

Troubleshoot Engine Issues . 18-7

xii Contents

Getting Started

13

Introducing Simscape Driveline
Software

• “Simscape Driveline Product Description” on page 1-2
• “Related Products” on page 1-3
• “Drivetrain Model” on page 1-4
• “Capabilities of Simscape Driveline Software” on page 1-18

1

Simscape Driveline Product Description
Model and simulate rotational and translational mechanical systems

Simscape Driveline provides component libraries for modeling and simulating rotational
and translational mechanical systems. It includes models of worm gears, lead screws, and
vehicle components such as engines, tires, transmissions, and torque converters. You can
use these components to model the transmission of mechanical power in helicopter
drivetrains, industrial machinery, automotive powertrains, and other applications. You can
integrate electrical, hydraulic, pneumatic, and other physical systems into your model
using components from the Simscape family of products.

Simscape Driveline helps you develop control systems and test system-level performance.
You can create custom component models with the MATLAB® based Simscape language,
which enables text-based authoring of physical modeling components, domains, and
libraries. You can parameterize your models using MATLAB variables and expressions,
and design control systems for your physical system in Simulink®. To deploy your models
to other simulation environments, including hardware-in-the-loop (HIL) systems,
Simscape Driveline supports C-code generation.

Key Features
• Gear models, including planetary, differential, and worm gears with meshing losses,

viscous losses, and thermal effects
• Clutch models, including cone, disk friction, synchronizer, unidirectional, and dog

clutch
• Vehicle component models, including engine, tire, torque converter, and vehicle

dynamics
• Models of translational elements, including leadscrew, rack and pinion, and

translational friction
• MATLAB based Simscape language for creating custom component models
• Physical units for parameters and variables, with all unit conversions handled

automatically
• Support for C-code generation (with Simulink Coder™)

1 Introducing Simscape Driveline Software

1-2

Related Products
In this section...
“Required Products” on page 1-3
“Other Related Products” on page 1-3

Required Products
To use the Simscape Driveline product, you must have installed current versions of the
following products:

• MATLAB
• Simulink
• Simscape

Other Related Products
On the MathWorks website, on the Simscape Driveline product page, the related products
that are listed include toolboxes and blocksets that extend the capabilities of MATLAB
and Simulink. These products can enhance Simscape Driveline modeling and simulation
in various applications.

Physical Modeling Product Family

Use the Physical Modeling product family to model physical systems in Simulink. In
addition to Simscape Driveline software, the product family includes:

• Simscape, the platform and unifying environment for Physical Modeling products.
• Simscape Electrical™, for modeling and simulating electronic, mechatronic, and

electrical power systems.
• Simscape Fluids™, for modeling and simulating hydromechanical systems.
• Simscape Multibody™, for modeling and simulating mechanical systems.

For Information About MathWorks Products

• If you have the product installed, see the online documentation for that product.
• See the “Products” section at the MathWorks website at www.mathworks.com.

 Related Products

1-3

https://www.mathworks.com/products/simdrive/
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com

Drivetrain Model
In this section...
“What the Model Represents” on page 1-4
“What the Model Illustrates” on page 1-4
“Open CR-CR Transmission Example Model” on page 1-6
“Run the Model” on page 1-8
“Modify the Model” on page 1-11

What the Model Represents
The model sdl_transmission_4spd_crcr simulates a complete drivetrain. This
example helps you understand how to model driveline components with Simscape
Driveline blocks, connect them into a realistic model, use Simulink blocks and variant
subsystems in driveline modeling, and simulate and modify a drivetrain model.

This driveline mechanism is part of a full vehicle, without the engine or engine-drivetrain
coupling, and without the final differential and wheel assembly. The model includes an
actuating torque, driver and driven shafts, a four-speed transmission, and a braking
clutch.

For a complete vehicle model that uses this drivetrain, see the sdl_car example model
and “Complete Vehicle Model” on page 3-2.

What the Model Illustrates
The sdl_transmission_4spd_crcr model contains a driveline that accepts a driving
torque. The driveline system transfers this torque and the associated angular motion from
the input or drive shaft to an output or driven shaft through a transmission. The model
includes a CR-CR (carrier-ring-carrier-ring) four-speed transmission subsystem, based on
two gears and four clutches. (The example does not use the reverse gear in the CR-CR
transmission.) You can set the transmission to four different gear combinations, allowing
four different effective torque and angular velocity ratios. A fifth clutch, outside the
transmission, acts as a brake on the driven shaft.

The transmission subsystem illustrates a critical feature of transmission design, the
clutch schedule. To be fully engaged, the transmission, with four clutches and two

1 Introducing Simscape Driveline Software

1-4

planetary gears, requires two clutches to be locked and the other two unlocked at any
time. (The transmission reverse clutch is not applicable here.) The choice of which two
clutches to lock determines the effective gear ratio across the transmission. The clutch
schedule is the relationship shown in the table of locked and free clutches corresponding
to different gear settings. If all four clutches are unlocked, the transmission is in neutral.
If the clutches are disengaged, no torque or motion at all is transferred across the
transmission.

Clutch Schedule for the CR-CR 4-Speed Transmission
Gear
Setting

Clutch A
State

Clutch B
State

Clutch C
State

Clutch D
State

Clutch R
State

Drive Ratio

1 L F F L F 1 + go

2 L F L F F 1 + go/(1 +
gi)

3 L L F F F 1
4 F L L F F gi/(1 + gi)
Reverse F F F F L –gi

• L = locked
• F = free
• gi = Input Planetary Gear ring-to-sun gear ratio
• go = Output Planetary Gear ring-to-sun gear ratio

Clutch Control Variant Subsystem

A Variant Subsystem block governs transmission gear changes. This block, named Clutch
Control, contains two child subsystem blocks that provide different clutch control modes,
or variants:

• Manual — Manually switch transmission clutches.
• Programmed — Automatically switch transmission clutches according to a

programmed clutch schedule.

During simulation, one variant becomes active while the other does not. The choice of
active variant determines which child subsystem controls the gear changes. By default,
the Programmed variant is active and gear changes follow a programmed clutch
schedule. To switch gears manually during simulation, change the active variant to
Manual.

 Drivetrain Model

1-5

Open CR-CR Transmission Example Model
To open the CR-CR transmission example model, at the MATLAB command prompt, enter

sdl_transmission_4spd_crcr

Block Diagram Model

Examine the model and its structure. The main model window contains the transmission
subsystem, the input shaft assembly, and the output shaft assembly. Each assembly
consists of a driveline axis with applied damping and inertia torques. Each driveshaft
balances the torques applied across its ends with the damping and inertia forces. A net
torque is transmitted along the driveline.

The main model also includes a brake clutch. When this clutch is locked, the shaft slows,
but doesn’t necessarily stop. The transmission can be engaged at the same time as the
brake. If the transmission is engaged, the clutch remains unlocked.

Main Model Window

1 Introducing Simscape Driveline Software

1-6

What the Model Contains—Opening the Subsystems

Open each subsystem.

The transmission subsystem contains four clutches, two planetary gears, and four inertias
(rotating bodies). Ignoring the reverse gear and its clutch, this transmission has four
possible (forward) gear settings. Exactly two clutches must be locked at any one time for
the transmission to engage and to avoid conflicting constraints on the gear motions.

CR-CR 4-Speed Transmission Subsystem

The Clutch Control variant subsystem provides the pressures that lock the necessary
clutches. In its default state, the clutch controller is programmed to move the
transmission through a fixed sequence of gears, then unlock all the transmission clutches.
This control program allows the driven shaft to “coast” for a time, and then engage and
lock the brake clutch to stop the driven shaft.

 Drivetrain Model

1-7

Clutch Control Subsystem

The Scopes subsystem provides Scope blocks to display the clutch pressure and the input
and output shaft velocity signals.

Scopes Subsystem

Run the Model
To display the CR-CR driveline model behavior:

1 Introducing Simscape Driveline Software

1-8

1 Open the Scopes subsystem and then the Scope block. Close the Scopes subsystem.
2 Click Start. The model steps through the gears and then brakes.
3 Observe how the clutch pressure signals move the transmission into one gear after

another, at 0, 5, 10, and 15 seconds of simulation time. To determine which gear
settings the model is implementing, compare these clutch pressure signals to the
clutch schedule in the CR-CR transmission subsystem. The model steps through gears
1, 2, 3, and 4, before coasting and then braking.

4 To compare the angular velocities of the input and output shafts, click Plot speeds. A
figure that contains the Shaft Speeds and Clutch States opens.

 Drivetrain Model

1-9

In the transmission, the two planetary gears are coupled in different ways in the
different gear settings, producing different relationships between the driven and
driver shaft velocities. The effective drive ratio of output to input shafts is the
reciprocal of the ratio of output to input angular velocities.

5 Zoom to observe the results for the shaft speeds 20–26 seconds.

1 Introducing Simscape Driveline Software

1-10

The transmission clutch pressures drop to zero, and the transmission disengages. The
transmission ceases to transfer angular motion and torque from the driver to the
driven shaft, and the driven shaft continues to spin from inertia alone. A small kinetic
friction damping gradually slows the driven shaft over the next six seconds.

At 26 seconds of simulation time, the brake clutch pressure begins to rise from zero,
and the brake clutch engages. The driven shaft decelerates more drastically now.
26.0–26.2 seconds, the brake clutch locks, and the driven shaft stops rotating
completely.

Modify the Model
You can modify this example model to explore other Simscape Driveline features. Here
you modify and rerun the model to investigate two aspects of its motion.

• Measure the effective drive ratio of the CR-CR transmission in each gear setting that it
steps through.

• Change the gear sequence.

Measuring the Drive Ratio of the CR-CR Transmission States

A transmission is a set of coupled gears. For a particular transmission gear setting, the
ratio of driven (output) shaft velocity to the driver (input) is fixed. The reciprocal ratio,
the drive ratio, is like a gear ratio of an individual gear coupling, but for the whole
transmission.

 Drivetrain Model

1-11

The drive ratio is the ratio of input to output shaft velocities. Add and connect the
necessary Simulink blocks to measure the drive ratio for the CR-CR 4–speed transmission.

1 Collect data for the angular velocity for the driver shaft:

a Make a copy of the S sensor subsystem that is connected to the Out port of the
transmission subsystem. The output sensor captures the angular velocity of the
driven shaft.

b Connect the new sensor subsystem to the connector between the input shaft
assembly and the In port of the transmission subsystem.

2 To calculate the drive ratio, from the Simulink Library Browser, from the Simulink >
Math Operations library, add a Divide block.

3 To visualize the drive ratio, add and configure a Scope block:

a Make a copy of the Shaft Speed scope block.
b Change the name the new scope block to Drive Ratio.
c Open the Drive Ratio block.
d Open the configuration parameters for the scope.
e On the Display tab, set the Y-limits (Minimum) to 0 and the Y-limits (Maximum)

to 6.
f Connect the block as shown in the figure.
g Label the input signal to the Drive Shaft block as Drive Ratio.

1 Introducing Simscape Driveline Software

1-12

4 Simulate the model. Observe how the drive ratio steps through a sequence of five-
second states, in parallel with the clutch pressures and clutch modes, until it reaches
20 seconds. The drive ratio measurement after 20 seconds is not meaningful because
the transmission is uncoupled.

Just after 26 seconds, the driven shaft velocity drops to zero, and the Divide block
produces divide-by-zero warnings at the MATLAB command line.

 Drivetrain Model

1-13

5 Consult the table, Clutch Schedule for the CR-CR 4-Speed Transmission. Check the
drive ratios for each gear, 1, 2, 3, and 4, in terms of the gear ratios of the two
Planetary Gears in the transmission. Determine the numerical values for these drive
ratios for gear settings 1, 2, 3, and 4. Then check them against the values displayed
in the Drive Ratio scope.

The drive ratio sequence is 3, 5/3, 1, and 2/3, respectively, for the first, second, third,
and fourth intervals of five seconds each.

Changing the Transmission Gear Sequence

When you first open the sdl_transmission_4spd_crcr example, the Clutch Control
variant subsystem is programmed to step through CR-CR gear settings 1, 2, 3, and 4,
before disengaging. Modify it to step through settings 1, 2, 3, and 1, then disengage. The
fourth gear requires that A is free, B is locked, C is locked, and D is free. Modify the

1 Introducing Simscape Driveline Software

1-14

clutch pressure signal sequence from 15 to 20 seconds so that the transmission is set in
first, not fourth, gear. The first gear requires clutches that A and D are locked and
clutches B and C are free.

1 Determine the clutch states that correspond to first gear. Refer to table Clutch
Schedule for the CR-CR 4-Speed Transmission.

2 Double-click the Clutch Control subsystem.
3 In the Clutch Control subsystem, double-click Programmed.
4 In the Programmed subsystem, double-click Clutch Pressures. The signal builder

window opens with the clutch pressure signals.
5 In the time interval 15–20 seconds, update clutch signals A through D to match first

gear. Clutches A and D must lock, while clutches B and C must remain free. Specify a
signal value of one to lock a clutch, zero to unlock it.

 Drivetrain Model

1-15

Modified CR-CR 4-Speed Transmission Clutch Pressures
6 Run simulation.

Clutch pressures, clutch modes, and driven shaft velocities in the time interval 15–20
seconds now correspond to first gear. Refer to the Drive Ratio plot for the updated
model. The ratio has changed from 2/3 (fourth gear) to 3 (first gear) accordingly.

1 Introducing Simscape Driveline Software

1-16

 Drivetrain Model

1-17

Capabilities of Simscape Driveline Software
In this section...
“What Simscape Driveline Software Contains” on page 1-18
“Model Driveline Systems” on page 1-19
“Model Inertias and Gears” on page 1-20
“Model Dynamic Driveline Elements” on page 1-21
“Model Custom Driveline Elements” on page 1-21
“Actuate and Sense Motion” on page 1-21
“Simulate and Analyze Motion” on page 1-22

What Simscape Driveline Software Contains
Simscape Driveline software is a set of block libraries in the Simulink environment and
based on Simscape software. You connect Simscape Driveline blocks to normal Simulink
blocks through Simscape physical signal blocks that define physical units.

The blocks in the Simscape Driveline library and the related mechanical blocks in the
Simscape Foundation library are the elements to model driveline systems. These systems
consist of one or more inertias and masses, rotating about or translating along one or
more axes, constrained to rotate or translate together by gears, which transfer torque
and forces to different parts of the driveline. You can represent drivelines with
components organized into hierarchical subsystems, as in any Simulink model. You can:

• Constrain motion with gears.
• Add complex dynamic elements such as clutches, clutch-like elements, and other

couplings.
• Represent such vehicle components as bodies and tires.
• Actuate bodies with torques, forces, and motions.
• Integrate the Newtonian rotational and translational dynamics, then measure the

resulting motions.

Relation to Simscape Software

To model and simulate physical systems, Simscape Driveline models use such Simscape
technologies as nondirectional physical connections and conserving ports, physical

1 Introducing Simscape Driveline Software

1-18

signals carrying physical units, custom component modeling, specialized solvers, and data
logging.

The Simscape mechanical rotational and translational domains form the basis of the
Simscape Driveline block libraries and models. The Simscape Foundation library
(Simscape) includes physical signal blocks (Simscape); and basic mechanical blocks
(Simscape) representing inertia, mass, and simple mechanical couplings. It also includes
motion, torque, and force sources and sensors.

For more about modeling and simulating in the Simscape environment, see the
“Simscape” documentation.

Physical Connections, Mechanical Conserving Ports, and Physical Signals

On Simscape Driveline blocks, the mechanical conserving ports anchor physical
connection lines that, in this domain, represent mechanical axes. These axes are either
rotation axes along which torque is transferred and around which inertias rotate, or
translation axes along which force is transferred and along which masses translate.

Certain blocks defined in Simscape domains also require input or output signals that

carry physical units, or physical signals. Simscape physical signal lines and ports
represent and connect physical signals with units. Conversion blocks allow you to convert
dimensionless Simulink signals to Simscape physical signals, and back.

Model Driveline Systems
Simscape Driveline software extends Simulink and Simscape software with blocks to
model driveline components and properties, represent drivelines as physical networks,
and to solve the equations of motion.

To build and run a Simscape Driveline model representation of a driveline:

1 Specify rotational inertia or translational mass for each body. Connect the bodies with
physical connection lines representing driveline axes at mechanical conserving ports.

If needed, ground the driveline to one or more mechanical references fixed in space.
2 Constrain the driveline axes to rotate or translate together by connecting them with

gears. Gears impose static constraints on driveline motions and transfer torques and
forces at fixed ratios.

3 As necessary, add dynamic elements that transfer torque, force, and motion among
driveline axes in a nonstatic way. These elements include internal torque-generating

 Capabilities of Simscape Driveline Software

1-19

components such as damped springs, clutches, clutch-like elements, transmissions,
and torque converters. You can also construct and connect your own dynamic
elements.

Similarly, add dynamic sources and environmental interactions, such as engines,
vehicle bodies, and tires.

4 Set up mechanical sources and sensors to initiate and record body motions, and to
apply external torques and forces to the driveline.

5 Connect the Simscape Solver Configuration to the driveline, then configure it. Start
the simulation, calling the Simulink and Simscape solvers to find the motions of the
system. Display and analyze the motion.

Model Inertias and Gears
Simscape Driveline software defines a driveline as a collection of rotating and translating
bodies, defined by their rotational inertias and translational masses. Rotational and
translational degrees of freedom (DoFs) originate on inertias and masses, but are carried
by physical connection lines. Directly connecting one body to another constrains both
bodies to rotate at the same angular or linear velocity. A torque or force applied to one
body is applied to both. You can also ground driveline axes to mechanical references that
do not move and that represent infinite effective inertia or mass.

Note All Simscape Driveline DoFs are absolute in an implicit global coordinate system at
rest, but are measured and used in a relative way, between one component and another.
To measure regarding the global rest frame, ground sensors or other components with
mechanical reference blocks.

In a real driveline, the bodies can also be connected indirectly by gears that couple
driveline axes. The gears constrain the axes to rotate together. These gears can be simple
or complex and can couple two or more axes. The gears have two roles:

• Constraining the connected axes to rotate or translate together at velocities in fixed
ratio or ratios.

• Transferring the torques or forces flowing along one or more axes to other axes, also
in fixed ratio or ratios.

1 Introducing Simscape Driveline Software

1-20

Model Dynamic Driveline Elements
To create more realistic driveline models, you elaborate on simple drivelines consisting of
inertias, masses, and gears. You add complex mechanical elements that generate torques
and forces internally within the driveline, between one axis and another. Certain
Simscape Driveline blocks encapsulate as subsystems entire models of complex driveline
elements:

• Load-dependent loss models of nonideal gears.
• Clutches and clutch-like elements that model the locking and unlocking of pairs of

driveline axes by applying kinetic and static friction
• Vehicle component models that represent engines, tires, and vehicle bodies
• Specialized torque and force models, such as torque converters, hard stops, and

damped spring-like torsion

Model Custom Driveline Elements
The blocks provided in the Simscape Foundation library can serve as starting points for
developing variant or entirely new models to simulate the same components. You can also
study masked subsystems by looking under their masks. If necessary, break the link
between the block and the library before modifying it, and then create your own version.
Or, create your own new blocks using Simscape Driveline and Simscape components, or
with the Simscape language.

For more information on specialized driveline components, see “Specialized and
Customized Driveline Components” on page 9-2.

Actuate and Sense Motion
Simscape motion sources and sensors are the blocks that you use to insert and extract
basic kinematic and dynamic information:

• Source blocks impart motion to driveline axes and impose externally defined torques
and forces on the bodies of a driveline.

• Sensor blocks measure the motions of, and the torques and forces transferred along,
the axes of a driveline system.

Source inputs and sensor outputs (Simscape) are physical signals that carry units.

 Capabilities of Simscape Driveline Software

1-21

Simulate and Analyze Motion
Once you specify all the rotational inertias and translational masses of the bodies and
interconnect the bodies with gears and other driveline elements, the dynamic problem of
finding the system motion is solvable. To finish a driveline model and prepare it for
simulation, you connect the driveline to the Simscape solver. This solver defines certain
aspects of the simulation and integrates the Newtonian dynamics for the system, applying
all internal and external torques and constraints to find the motions of the bodies.

Once your model is ready for simulation, run it and analyze its motions, torques, and
forces.

Inverse Dynamics — Trimming and Linearization

You typically do not know the torques and forces necessary to produce a given set of
motions. By motion-actuating your driveline with motion sources and measuring the
resulting torques and forces, you can find the torques and forces required to produce
specified motions. This technique inverts the canonical approach to dynamics, which
consists of finding motions from torques and forces.

A special case of inverse dynamics is trimming. This technique involves searching for
steady-state motions of the bodies, when their accelerations and the torques and forces
they experience vanish. Using the specialized tools in Simscape and Simulink, you can
perturb such a steady motion state slightly to find how the system responds to small
disturbances. The response indicates the system stability and suitability for controllers.

Generating Code — Real-Time and Hardware-in-the-Loop Simulation

Simscape Driveline software is compatible with Simulink Acceleration modes, Simulink
Coder, and Simulink Real-Time™ software. With these products, you can generate code
versions of the models that you originally create in Simulink with block diagrams,
enhancing simulation speed and model portability. A common application of generated
code is defining real-time and hardware-in-the-loop simulations.

The presence of clutches in a driveline model induces locking-unlocking iterations and
dynamic discontinuities. These discontinuities place certain restrictions on code
generation. For more information about these restrictions, see “Driveline Simulation
Performance” on page 16-2 and “Simscape Driveline Limitations” on page 16-64.

1 Introducing Simscape Driveline Software

1-22

Modeling Driveline Systems

• “Start a New Simscape Driveline Model” on page 2-2
• “Build a Drivetrain Model” on page 2-3

2

Start a New Simscape Driveline Model
You can use the Simscape model template as a starting point for your Simscape Driveline
models. The template provides the required Solver Configuration block and the commonly
used Simulink-PS Converter and PS-Simulink Converter blocks.

To open the Simscape model template, at the MATLAB command prompt, enter ssc_new.
Simscape software opens the model template along with the Foundation block library. To
open the Simscape Driveline block library, enter sdl_lib.

2 Modeling Driveline Systems

2-2

Build a Drivetrain Model
The example model in “Drivetrain Model” on page 1-4 illustrates a typical drivetrain
system that you can model with Simscape Driveline software. It also illustrates the key
rules for connecting driveline blocks to each other and the dual roles of Simscape
physical connection lines in driveline modeling. Within the Simscape mechanical domain:

• The across variable is angular or linear velocity, depending on the type of mechanical
ports you are connecting to, rotational or translational. Along any connection line, the
velocity is the same.

• Depending on the type of mechanical ports, you are connecting to, the through
variable is torque or force. Torques and forces are conserved along a connection line
and sum to zero at line branch points.

Before building and running the tutorial models, review these rules.

• Driveline blocks feature mechanical conserving ports and, in some cases, physical

signal ports . You can connect mechanical ports only to other mechanical ports, and
physical signal ports only to one another.

You cannot mix rotational and translational ports, or connect a mechanical conserving
port to a physical signal port.

• The physical connection lines interconnecting mechanical ports represent driveline
axes and enforce physical relationships. Unlike physical signal and Simulink lines, they
do not represent signals or mathematical operations, and they have no inherent
directionality.

• A driveline connection line represents an idealized massless and perfectly rigid
spinning shaft or translating axis. A driveline connection line between two ports
constrains the two driveline components that are connected to the line to rotate or
translate at the same velocity.

• You can branch mechanical connection lines. Connect the end of any branch of a
mechanical connection line to a mechanical port .

• Branching a driveline connection line modifies the physical constraints that it
represents. All driveline components connected to the ends of a set of branched lines
rotate or translate at the same velocity. For lines branched from a branch point, the
sum of all torques or forces flowing in equals the sum of all torques or forces flowing
out. How the torque or force is divided depends on the defining equations of the
attached blocks in the rest of the system.

 Build a Drivetrain Model

2-3

• Mechanical connection lines satisfying the velocity constraint must have the same
initial velocities.

Branching Driveline Connection Lines

The Solver Configuration block in this example does not use any torque. It does share the
angular velocity constraint from the branch point. Symbolically, the branching conditions
on driveline connection lines are:

ω1 = ω2= ω3 ...

and

τ1 + τ2 + τ3 + ... = 0

The sign convention is that torques flowing in are positive. Like all driveline axes, these
elements have no inherent directionality. Torque flow directions are defined by overall
system equations during simulation.

Torque and motion are transferred through the driveline from some driveshafts to others.
Certain Simscape Driveline blocks require explicit directionality and represent it by
designating one driveline connector port as the input base (B) and the other as the output
follower (F), or some equivalent pair. When required, positive relative motion of driveline
axes or shafts is measured as follower relative to base.

2 Modeling Driveline Systems

2-4

Motion Is Absolute Except when relative motion is explicitly required, all motion in
Simscape Driveline and Simscape models is measured in implicit absolute coordinates.
The Mechanical Rotational Reference and Mechanical Translational Reference blocks
define the absolute zero velocity. If they are connected to a driveline axis, these blocks
enforce this zero-motion state on that axis.

 Build a Drivetrain Model

2-5

Complete Vehicle Model

3

Complete Vehicle Model
The full car drivetrain simulation of the sdl_car example encompasses all the basic
methods of driveline modeling and many key Simscape Driveline features. It includes
engine and transmission models and a model of the drivetrain-wheel-road coupling. The
engine and transmission are coupled with a torque converter. Programmed clutch control
steps the transmission through four gears during the simulation. The clutch pressure
signals are smooth and more realistic than the sharp clutch pressure signals in the
simpler drivetrain examples. This section describes these features, subsystems, and their
relationship and purposes, leading you to actual simulation.

Understanding the Global Structure of the Model
Open the example. The model contains model workspace variables for parameterizing
some of the blocks. For information on creating, accessing, and changing model
workspace variables, see “Specify Source for Data in Model Workspace” (Simulink) and
“Change Model Workspace Data” (Simulink).

Vehicle with Four-Speed Transmission Model

The main driveline subsystems and components are:

3 Complete Vehicle Model

3-2

• Driver Inputs — Throttle/brake profile
• Engine — System-level model of spark-ignition and diesel engine
• Torque Converter — Three-part torque converter consisting of an impeller, a turbine,

and a stator.
• Transmission subsystem — CR-CR 4-speed transmission
• Shift Logic — Stateflow® implemented transmission controller
• Vehicle Body — Vehicle, tire, and brake dynamics

While the engine is idling initially at a nonzero speed, the transmission output and the
vehicle as a whole are initially not moving.

Model the Throttle/Brake Profile
The Driver Inputs block is a Simulink Signal Builder block that provides throttle and
brake signals to the engine and transmission control system. Open the Driver Inputs
block to view the throttle/brake profile for the simulation.

The throttle signal is programmed to produce a realistic acceleration profile and to agree
with the gear shifting sequence described in “Control the Clutches” on page 3-7. The
throttle signal feeds to the engine and to the transmission controller.

The brake signal supplies the input force that actuates braking in a Double-Shoe Brake
block in the Vehicle Body subsystem.

Model the Engine
For the purposes of system modeling, an engine or motor specifies an output torque as a
function of driveline speed. The engine has a connection port coupling it rotationally to
the rest of the system.

Using an Engine Block from Vehicle Components

The Engines library contains blocks that you control using an input physical signal for the
throttle. You can parameterize the Generic Engine block using vectors to specify speed
and torque. The block calculates the maximum possible torque as a function of the engine
speed at any instant. The throttle signal controls how much of the maximum torque the
engine can deliver. The Piston Engine block accounts for the instantaneous torque
transmitted to the engine drive shaft. The instantaneous torque enables you to model

 Complete Vehicle Model

3-3

vibrations in the drivetrain due to piston revolution. To model just the piston mechanism
of a combustion engine, use the Piston block.

The sdl_car example uses a Generic Engine block, configured as spark-ignition type.
The block properties specified in the dialog box include the maximum power, speed at
maximum power, and maximum possible speed of the engine. To view engine settings,
click the Engine block. The engine torque and motion are modeled relative to the
rotational ground, which is taken as the base reference of the engine and the starting
point of the driveline, or mechanical rotational, connections in this model.

Alternative and Advanced Methods for Modeling Engines

Simscape Driveline allows you to create complex, custom engine models. Several
important engine features to consider in a complex model are:

• Distinguishing steady-state behavior from engine start-up, when the engine speed-
engine torque function has not yet reached its maximum possible envelope

• Details of mechanical power production, such as air-fuel compression and combustion
• Additional controls beyond what can be represented by a single throttle signal

Model the Transmission
The CR-CR 4-speed transmission subsystem in the sdl_car model is similar to other
examples with the same transmission. The clutch and planetary gear properties are set in
the blocks with model workspace variables.

Workspace Variable Description
eff_tor_rad Clutch: effective torque radius (m)
num_fric_surf Clutch: number of friction surfaces in contact
engagement_area Clutch: friction surface area in contact (m2)
fric_coeff Clutch: kinetic friction coefficient of surfaces in contact
peak_normal Clutch: static (locking) friction coefficient of surfaces in

contact
velTol Clutch: clutch velocity locking tolerance (rad/s)
pressThresh Clutch: Normalized pressure threshold
p0 Clutch: Physical pressure normalization (Pa)

3 Complete Vehicle Model

3-4

For more about gears, clutches, and transmissions, see the Disk Friction Clutch block
reference page.

Couple the Engine to the Transmission
The sdl_car model couples the engine and the transmission through a torque converter
block.

Torque Converter Stage

Like a clutch, a torque converter couples two independent driveline axes to transfer
angular motion and torque from an input to an output shaft. However, unlike a clutch, a
torque converter never locks. The torque converter transfers motion by hydrodynamic
viscosity, not by surface friction. Thus a torque converter does not step through discrete
stages and avoids the motion discontinuities inherent in friction clutches.

To mimic engine idling at the start of the simulation, the initial condition of the impeller
inertia is a nonzero angular velocity. The initial condition of the turbine & input shaft
inertia is zero speed.

For more details about these blocks, see the Torque Converter and Inertia block reference
pages.

 Complete Vehicle Model

3-5

Model the Tires, Brakes, Wheels, and Road
The transmission feeds its output torque to the final drive subsystem, Vehicle Body. This
subsystem represents the vehicle inertia (the load on the transmission), the wheels, the
brakes, the driving conditions, and the wheel contact with the road. The subsystem
models only the rear wheels as driven by the transmission.

Final Drive Subsystem: Vehicle Body

The subsystem has two major areas.

Modeling the Tires and Brakes

The right and left tire blocks accept the driveline torque and rotation from the
transmission at their wheel axle rotational ports (A). Given a normal or vertical load (N),
this torque and rotation are converted to a thrust force and translation at the wheel hub
translational ports (H).

The tires rotate nonideally, slipping before they fully generate traction and react against
the road surface. The tire slip of the left tire is reported as a physical signal and
converted to Simulink for use with the Tire slip scope.

The Double-Shoe Brake block represents a brake arranged as two pivoted rigid shoes that
are symmetrically installed inside or outside of a drum and operated by one actuator. The
brake block converts the braking signal from the Driver Inputs block to an actuator force
that exerts a friction torque on the shaft that connects the brake drum to the tire blocks.

3 Complete Vehicle Model

3-6

Modeling the Vehicle Body and Load

The driveline connection line sequence of the model ends with the Vehicle Body block,
which specifies the vehicle geometry, mass, aerodynamic drag, and initial velocity (zero).
This block generates the normal forces that the Tire blocks accept as vertical loads.
Vehicle Body accepts the developed thrust force and motion at its horizontal motion
translational port (H). The vehicle body model also accepts a wind velocity (W) and a road
incline (beta), both provided by physical constants.

The rear wheel vertical load force (NR) is reported back to the Tire blocks. The forward
wheel vertical load (NF) is not used.

The forward velocity (V) of the vehicle is converted and reported, through the subsystem
outport, to the Vehicle velocity scope.

Alternative Differential, Wheel, Road, and Braking Models

The sdl_car example models only the rear wheels, the rear tires, and the vehicle body,
without the more realistic drivetrain components of differential gears and brakes. The
sdl_vehicle_4wd example illustrates how to model a vehicle that has four wheels and
front and rear differential gears.

For information on modelling brake systems using clutches, see “Brake Motion Using
Clutches” on page 7-9 and “Model a Two-Speed Transmission with Braking” on page 8-
3.

Control the Clutches
To select and engage the appropriate gear set, the model uses a Stateflow block and
clutch schedule. To see how these components work, return to the main model of
sdl_car.

State-Controlled Gear Selection

The Stateflow block, which is labeled Shift Logic, implements gear selection for the
transmission. The block determines whether to shift up or down based on input from two
other components in the model. Driver Inputs block supplies throttle and braking
information. The Vehicle Body subsystem supplies the velocity of the vehicle body via a
feedback loop.

To open the Stateflow diagram, double-click the Shift Logic block. The Model Explorer is
utilized to define the inputs as throttle and vehicle speed and the output as the desired

 Complete Vehicle Model

3-7

gear number. Two dashed AND states keep track of the gear state and the state of the
gear selection process. The overall chart is executed as a discrete-time system. The
Stateflow diagram shown in the figure illustrates the functionality of the block.

The model computes the upshifting and downshifting speed thresholds as a function of
the instantaneous values of gear and throttle. While in steady_state, the model
compares these values to the present vehicle speed to determine if a shift is required. If
so, it enters one of the confirm states (upshifting or downshifting), which records the time
of entry.

If the vehicle speed no longer satisfies the shift condition, while in the confirm state, the
model ignores the shift and it transitions back to steady_state. The steady-state
condition prevents extraneous shifts due to noise conditions. If the shift condition remains
valid for a duration of TWAIT ticks, the model transitions through the lower junction and,
depending on the current gear, it broadcasts one of the shift events. The model again

3 Complete Vehicle Model

3-8

activates steady_state after a transition through one of the central junctions. The shift
event, which is broadcast to the gear_selection state, activates a transition to the
appropriate new gear. The Stateflow block outputs the gear information to a clutch
schedule subsystem that is in the transmission subsystem.

Clutch Schedule Subsystem

The signal from the Stateflow block to the clutch schedule controls the five clutches of the
CR-CR 4-Speed transmission. To see the clutch schedule, open the Transmission
subsystem, and then the Clutch Schedule subsystem.

Run the Model
The model is configured to simulate for 50 seconds. The table shows the gear profile for
the simulation.

Time Ranges (s) CR-CR Gear Settings
0–3.96 1

3.96–10.48 2
10.48–40.68 3

 Complete Vehicle Model

3-9

Time Ranges (s) CR-CR Gear Settings
40.68–50 4

1 Simulate the car.
2 To see the results using the Simscape Results Explorer, in the description in the

model window, click Explore simulation results.
3 To plot the rotational velocity in RPMs and power in Watts for the engine:

a In the left pane of the Results Explorer window, expand the node for the Engine
b Click the F node, and then the w node.
c To change the units for the y-axis to revolutions per minute, click the arrow

button below the y-axis label (rad/s) and select rpm.
d To add a plot of the power that the engine delivers to the torque converter, Ctrl

+click the P node.
4 Add a plot of the tire slip.

a Ctrl+click to expand the Vehicle_body node.
b Ctrl+click to expand the Tire_Left node.
c Ctrl+click the S node.

5 Add a plot of the vehicle velocity.

a Ctrl+click to expand the second Vehicle_body node.
b Ctrl+click the v node.
c To change the units to kilometers per hour, click the arrow button below the y-

axis label (m/s), select Specify, and for Specify your unit, enter km/hr.

3 Complete Vehicle Model

3-10

 Complete Vehicle Model

3-11

The plots show that for:

• Engine speed and power — When the transmission shifts to second gear at 3.96
seconds, the engine reaches its maximum speed and power.

• Tire slip — As the transmission steps into higher gears, the speed ratio rises. The drive
ratio falls, and the tire slip decreases. The tire motion more closely approaches ideal
(nonslipping) motion at higher speeds.

• Vehicle velocity — The speed increases less with each upshift for gears one, two, and
three. The velocity decreases slightly before it starts to stabilize when the car is in
fourth gear.

3 Complete Vehicle Model

3-12

Basic Motion, Torque, and Force
Modeling

The purpose of a gear set is to transfer rotational motion and torque at a known ratio
from one driveline axis to another. Simscape Driveline allows you to model simple and
custom gears for coupling bodies that are rotating on a driveline axis.

The rules that apply to angular gears in relation to rotational motion and torque are
analogous to the rules apply to linear gears inrelation to translational motion and force.

4

Couple Rotational Motion with Gears
A gear set consists of two or more meshed gears rotating together at some specified gear
ratios. By convention, Simscape Driveline gear ratios are constant. The gear ratios
determine how angular velocity and torque are transferred from one driveline component
to another.

Gear Coupling Rules
Ideal gears mesh and rotate together at a point of contact without frictional loss or
slippage.

The simplest gear coupling consists of two circular gear wheels of radii r1 and r2, spinning
with angular velocities ω1 and ω2, respectively, and lying in the same plane. Their
connected shafts are parallel and carry torques τ1 and τ2. The gear ratio of gear 2 to gear
1 is the ratio of their respective radii: g12 = r2/r1. The power transferred along either shaft
is ω·τ.

The gear coupling is often specified in terms of the number of gear teeth on each gear, N1
and N2. The gear ratio of gear 2 to gear 1 is then g12 = N2/N1 = r2/r1.

The fundamental conditions on the simple gear coupling of rotational motion are ω2/ω1 =
±1/g12 and τ2/τ1 = ±g12. That is, the ratio of angular velocities is the reciprocal of the
ratio of radii, while the ratio of torques is the ratio of radii. The transferred power, being
the product of angular velocity and torque, is the same on either shaft.

The choice of signs indicates that the gears can spin in the same or in opposite directions.
If the gears are external to one another (rotating together on their respective outside
surfaces), they rotate in opposite directions. If the gears are internal to one another
(rotating together with the outside of the smaller gear meshing with inside of the larger
gear), they rotate in the same direction.

Caution Gear ratios in driveline model blocks must be strictly positive. Vanishing or
negative gear ratios cause Simscape Driveline simulation to stop with an error at model
initialization. If you need to reverse the relative rotation direction of a shaft connected to
a gear, you can change the direction in the gear block dialog box.

4 Basic Motion, Torque, and Force Modeling

4-2

Couple Two Spinning Inertias with a Simple Gear
In this example, you couple two spinning inertias. In the first coupling, the inertias spin
with the same angular velocity along a single shaft (driveline axis). Then the inertias spin
at different velocities as they spin along two shafts and are coupled by a gear. Finally, the
inertias are coupled by a gear and actuated by an external torque, so that they spin at
different rates and experience different torques. For each model, the example uses basic
Simscape mechanical and Simscape Driveline blocks, such as Inertia, Simple Gear, and
Solver Configuration.

Modeling Two Spinning Inertias
Create the first version of the simplest, nontrivial driveline model, two inertias spinning
together along the same axis. Open the Simscape Driveline, Simscape, and Simulink block
libraries and a new Simulink model window.

1 Drag and drop two Inertia, two Ideal Rotational Motion Sensor, two Mechanical
Rotational Reference, and two PS-Simulink Converter blocks into the model window.

2 From the Simscape Utilities library, drag a Solver Configuration block. Every
topologically distinct driveline block diagram requires exactly one instance of this
block.

3 From the Simulink library, drag and drop a Scope, a Mux, and two pairs of Goto and
From blocks. Connect the blocks as shown in the following figures. The sensor
subsystems are arranged hierarchically.

 Couple Two Spinning Inertias with a Simple Gear

4-3

Model with Two Spinning Inertias

Sensor Subsystem

4 Basic Motion, Torque, and Force Modeling

4-4

Motion Sensor Subsystem
4 At the start of the simulation, because there is no damping, the inertias rotate at the

initial velocity that you specify. The connection line between the two Inertia blocks
requires them to have the same rotational velocity. To specify the initial rotational
velocity, open each Inertia block. In the Variables tab, select the Rotational
velocity check box and set the Value parameter to pi radians/second (rad/s).

5 Open the Scope block and start the simulation. The two angular velocities are
constant at 3.14 radians/second.

 Couple Two Spinning Inertias with a Simple Gear

4-5

Coupling Two Spinning Inertias with a Simple Gear
Modify the model you created by coupling the two spinning inertias with a simple, ideal
gear with a fixed gear ratio.

1 From the Simscape Driveline block library, drag and drop a Simple Gear block into
your model. Open the block. Change the default follower-base gear ratio value to 1.
Change the Output shaft rotates menu to In same direction as input shaft and
click OK. The simple gear then represents two gear wheels rotating together at the
same rate in the same direction, with one wheel inside the other. Connect the blocks
as shown in the following figure.

Model with Two Spinning Inertias Coupled by a Gear

Leave the initial angular velocities at pi in the Inertia blocks.
2 Open the Scope and start the simulation. The two angular velocities are constant at

3.14 radians/second for both Inertias.
3 Change the Output shaft rotates menu back to In opposite direction to input

shaft. The simple gear then becomes two wheels rotating together in opposite
directions, with the two wheels meshed on their respective outer surfaces. Change
initial velocity in Inertia2 to -pi.

4 Basic Motion, Torque, and Force Modeling

4-6

4 Restart the simulation. The two angular velocities are 3.14 and –3.14 radians/second
for Inertia1 and Inertia2, respectively. The second angular velocity is the same, but
with opposite sign, because the two bodies are spinning in opposite directions.

5 Change the Output shaft rotates menu again to In same direction as input shaft.

Torque-Actuating Two Coupled, Spinning Inertias
In the final version of the simple gear model, you actuate the inertias with an external
torque instead of starting them with fixed initial angular velocities. The external torque
varies sinusoidally. You can find a completed version of this model in the sdl_gear
example model.

1 From the Simscape Foundation library, copy an Ideal Torque Source and two Ideal
Torque Sensor blocks, plus a Simulink-PS Converter block and another Mechanical
Rotational Reference block. From the Simulink library, drag and drop a Sine Wave
block and two more pairs of Goto and From blocks.

2 Connect the blocks as shown in the following figures. The Torque Sensor subsystems
are arranged in parallel with the Motion Sensor subsystems inside the Sensor
subsystem blocks. Set the initial velocities of both Inertias to zero. Change the
default follower-base gear ratio value to 2. Modify the Scope block to add another
axis for measuring the torques. Connect the other blocks as shown.

 Couple Two Spinning Inertias with a Simple Gear

4-7

Model with Two Spinning Inertias Coupled by a Gear and Actuated with Torque

4 Basic Motion, Torque, and Force Modeling

4-8

Updated Sensor Subsystem

Torque Sensor Subsystem
3 Open the Scope block and start the simulation.

The measured torques and angular velocities vary sinusoidally. As in the preceding
models, the angular velocity of Inertia2 is half that of Inertia1. The torque in the second
(follower) shaft is twice that in the first, as required by the laws of gear coupling.

For the Simple Gear block, change the Output shaft rotates menu to In opposite
direction to input shaft and restart the simulation. The same angular velocities and
torques result, except that the values associated with Inertia2 and the second shaft are
negative because the second body and second shaft are spinning in opposite directions.

Sensing and Actuating Motion and Torque
The mechanical sensor and source blocks that you use in the preceding models illustrate
their dual nature. They act as driveline components themselves, but also let you inject
and extract physical signals associated with motion and torque, including the appropriate
physical units. You can use these physical signals with other blocks in the Simscape

 Couple Two Spinning Inertias with a Simple Gear

4-9

physical modeling environment, or convert them to dimensionless Simulink signals for use
in the nonphysical part of your model. Both sensor and source blocks have pairs of
mechanical ports and are connected either in series with or across physical connection
lines.

• Mechanical sensor and source blocks have both mechanical conserving ports and

physical signal ports .

Many Simscape Driveline blocks also feature a mix of mechanical conserving and
physical signal ports.

• An Ideal Torque Source injects torque along, or in series with, the driveline connection
line. An Ideal Torque Sensor measures the torque flowing along, or in series with, the
driveline connection line.

• An Ideal Rotational Motion Sensor reports the difference between the motions at its
two connection ports.

To extract the absolute motion at its R port, connect the C port to a mechanical
reference block that grounds that port to zero motion.

4 Basic Motion, Torque, and Force Modeling

4-10

Couple Two Spinning Inertias with a Variable Ratio
Transmission

You can modify the gear model from the “Couple Two Spinning Inertias with a Simple
Gear” on page 4-3 example by replacing the fixed-ratio gear with a transmission whose
gear ratio varies in time. You specify the gear ratio variation with a Simulink signal
converted to a unitless physical signal. Start with the gear model that you built in the
“Couple Two Spinning Inertias with a Simple Gear” on page 4-3 example or by opening
and editing the sdl_gear model.

1 From the Simscape Driveline block library, drag and drop a Variable Ratio
Transmission block and replace the Simple Gear block with it. The two shafts spin in
the same direction because the Output shaft rotates parameter for the Variable
Ratio Transmission block is set to In same direction as input (the default setting).

2 The Variable Ratio Transmission block accepts the continuously varying gear ratio as
a physical signal Simulink signal through the extra physical signal input labeled r.
For this example, create a variable signal for the gear ratio with a Signal Builder
block from the Simulink block library and Simulink-PS Converter block. Build a signal
that rises with constant slope from 1 to 2 over 10 seconds. Then connect the
converted physical signal to the r port.

 Couple Two Spinning Inertias with a Variable Ratio Transmission

4-11

Simple Variable Ratio Transmission Model
3 Do not change the other, original settings of the simple gear model. Open the Scope

and start the simulation.

The angular velocities and torques of the two shafts have the same signs. The ratios of
angular velocities and torques start at 1, because the initial gear ratio is 1. As the gear
ratio increases toward 2, the angular velocity of Inertia2 becomes smaller than the
velocity of Inertia1, while the associated torque in the second shaft becomes larger than

4 Basic Motion, Torque, and Force Modeling

4-12

the torque in the first shaft. Because of the changing gear ratio, the motion and the
torques are no longer strictly sinusoidal, even though the actuating external torque is.

The sdl_gear_variable example is a full model of this type. To learn more about how
to use variable gear ratios, consult the Variable Ratio Transmission block reference page.

 Couple Two Spinning Inertias with a Variable Ratio Transmission

4-13

Couple Three Spinning Inertias with a Planetary Gear
You can modify the gear model from the “Couple Two Spinning Inertias with a Simple
Gear” on page 4-3 example and use it as a starting point for studying complex gear sets.
One of the most important complex gear sets is the planetary gear, which has three
wheels, the ring, the sun, and the planet, all held in place by a common carrier body. The
planetary gear is important because it is a common component in complex, realistic
transmissions.

1 Start with the simple gear model you built or by opening the sdl_gear example.
2 Replace the Simple Gear in your model with a Planetary Gear from the Simscape

Driveline block library. A planetary gear splits input angular motion from the carrier
between the ring and sun wheels, each connected to their respective bodies.

3 Copy the Sensor (Follower) subsystem, the connected Inertia block, and a From
block.

4 Rename the sensor subsystems to match the gears that they attach to: carrier, ring,
and sun. Rename the signals on the Goto and From block tags to match the gears
that the signals represent:

• For the carrier gear, rename the tags signals as wC and tC.
• For the ring gear, rename the tags signals as wR and tR.
• For the sun gear, rename the tags signals as wS and tS.

5 Add an input to each of the two Mux blocks.
6 Connect the blocks to form the new diagram as shown in the figure.

4 Basic Motion, Torque, and Force Modeling

4-14

Simple Planetary Gear Model
7 Open the Scope and start the simulation to observe the angular velocities of the ring,

carrier, and sun, from largest to smallest. The ratio of the ring to sun gear velocities
is always 2.

 Couple Three Spinning Inertias with a Planetary Gear

4-15

8 To see the ring and sun wheels spinning alone, you must lock the carrier. To do so:

1 Delete the Inertia1 block and the associated connector.
2 Delete the connector between the Ideal Torque Sourceblock and the Sensor

(Carrier) subsystem.
3 Connect the Sensor (Carrier) subsystem to the connector between the

Mechanical Rotational Reference block and the Ideal Torque Source block.
4 Connect the Ideal Torque Source block to the connector between the Planetary

Gear block and the Sensor (Ring) subsystem.
5 Delete the connector that connects the Solver Configuration block to the

connector between the Mechanical Rotational Reference block and the Ideal
Torque Source block.

6 Reposition the Solver Configuration block.
7 Connect the Solver Configuration block to the connector between the Ideal

Torque Source block and the Sensor (Ring) subsystem.

4 Basic Motion, Torque, and Force Modeling

4-16

Simple Planetary Gear Model with Locked Carrier
9 Open the Scope and start your model. Observe the angular velocities of the ring,

carrier, and sun.

 Couple Three Spinning Inertias with a Planetary Gear

4-17

The carrier, connected to Mechanical Rotational Reference, does not move. The ring is
driven with a sinusoidal torque, and the sun responds by spinning in the opposite
direction (ring and sun gear wheels are external to one another) at twice the rate. The
ring wheel has twice the radius (or twice the number of teeth) as the sun, so it spins half
as fast.

4 Basic Motion, Torque, and Force Modeling

4-18

Driveline Actuation

From the torques and forces applied to driveline inertias and masses, a Simscape
Driveline simulation determines the resulting motion from the driveline component
connections and defining equations. However, a simulation can also accept motions
imposed on a driveline and solve for the torques and forces to produce those motions. In
general, a driveline simulation is a mixture of these two requirements, solving dynamics
both forward (torque and force to motion) and inverse (motion to torque and force).
Imposing motions and applying torques and forces to a driveline are together forms of
mechanical actuation.

5

Best Practices for Modeling Torque-Force Actuation and
Motion Actuation

All actuation, except for initial conditions, requires physical signal inputs to define time-
varying functions that carry physical units.

Torque-force actuation and motion actuation are complementary and mutually exclusive.
In all cases, exercise care as you apply a mixture of actuation types to a driveline and its
degrees of freedom (DoFs). The complete effect of the actuation types must be such that:

• Driveline DoFs actuated by torques and forces are not also subject to motion
actuation. (They can be subject to motion initial condition settings.)

• Driveline DoFs actuated by motions are not also subject to torque or force actuation.

For a Simscape Driveline model to simulate nontrivial motion, torque and motion
actuation types complement one another exactly to account consistently for the motion of
all the DoFs. If this criterion is not satisfied, one of these outcomes results:

• The motion of the driveline is trivial, staying in its initial motion state for the entire
simulation.

• The actuation types are inconsistent with each other, and the simulation stops with an
error.

• The actuation types leave the driveline motion underdetermined or overdetermined,
and the simulation stops with an error.

For more information, see “Troubleshoot Driveline Modeling and Simulation Issues” on
page 18-2.

5 Driveline Actuation

5-2

Actuate a Driveline Using Torques and Forces
You can apply a torque to a rotational driveshaft, or a force to a translational driveshaft,
in the following ways:

• Directly, with an Ideal Torque Source or Ideal Force Source block.
• Indirectly, with a dynamic element that generates torque or force. Such blocks include

torque converters, clutches and clutch-like elements, and engines.

A torque or force source accepts a physical signal input and originates, from its
mechanical conserving port, a mechanical connection line carrying that torque or force.

The Simscape Driveline simulation solves for the motion of the spinning or sliding
driveshaft, given the torque or force that it is subject to. Therefore you cannot also
subject that same driveshaft to motion actuation.

Note Simscape Driveline might generate an error if the combined torques and forces at
any given node have a nonzero sum.

 Actuate a Driveline Using Torques and Forces

5-3

Actuate a Driveline Using Motions
You can apply a motion to a driveshaft directly, with an Ideal Angular Velocity Source or
Ideal Translational Velocity Source block.

A motion source accepts a physical signal input and originates, from its mechanical
conserving port, a mechanical connection line spinning or sliding with the specified
motion.

The Simscape Driveline simulation solves for the torque or force carried by the spinning
or sliding driveshaft, given its motion. Therefore you cannot also subject that same
driveshaft to torque or force actuation.

5 Driveline Actuation

5-4

Set Initial Conditions of Driveline Motion
When driveline simulation starts, the complete driveline determines the initial motion of
all driveshafts by a combination of constraints, motion sources, and initial condition
settings. You set the initial conditions for the rotational and translational motion of
inertias and masses in their respective Inertia and Mass blocks. The block default for
initial velocities is zero (no initial motion).

For more information about constraints and degrees of freedom, see “Driveline Degrees
of Freedom” on page 16-38.

Note Ensure that the initial conditions that you impose on the Inertia and Mass blocks in
your driveline are consistent with all of the constraints and motion sources for the
driveline. If an inconsistency occurs, Simscape Driveline simulation stops with an error at
model initialization.

Resolving Undetermined Motions in Complex Gears
A simple gear has two ports and imposes one constraint between them, leaving one
independent DoF. Once one port is connected to a driveshaft, the motion of the driveshaft
of the other port is determined.

A complex gear has three or more ports and imposes one or more constraints among
them. A complex gear can have any number of independent DoFs, including none.

If a simulation apportions the initial motions of a complex gear in an unsatisfactory way,
enforce your preferred division by setting initial conditions on the connected Inertia and
Mass blocks.

However you divide the initial motion among the gear shafts, ensure that this division is
consistent with all constraints in your driveline, and with any motion sources.

For more information about complex gears, see “Basic Motion, Torque, and Force
Modeling” .

 Set Initial Conditions of Driveline Motion

5-5

Power Transmission Using Pulley
Networks

The Simscape Driveline Couplings and Drives library includes pulley blocks that allow you
to transmit power. The Belt Pulley block represents a simple belt-driven friction pulley.
The Belt Drive block combines two Belt Pulley blocks that you can configure as an open or
crossed belt system. You can model a simple hoist using the Belt Pulley. To model more
complex mechanisms, combine several pulley blocks with tensioners, which you can build
using springs and dampers. Build high-fidelity models by including other Simscape and
Simscape Driveline blocks.

6

Best Practices for Modeling Pulley Networks

In this section...
“Belt Direction” on page 6-2
“Inertia” on page 6-3
“Belt Tension” on page 6-3
“Power Window System Pulley Mechanism” on page 6-3

Like real-world pulleys, Simscape Driveline pulley blocks rely on belt tension and inertia
for motion. To prevent initialization errors and to obtain the desired power transmission
from your pulley system, apply these modeling methods.

Belt Direction
Pulley belt direction is not a geometric or physical constraint; it is purely a sign
convention. For example, for a Belt Pulley block with Belt direction set to Ends move
in opposite direction, the sign convention is such that a positive rotation in port S
tends to give a negative translation for port A and a positive translation for port B.
According to this convention, the angular velocity is the same for the two belt pulleys in
the figure.

For a Belt Pulley block with Belt direction set to Ends move in same direction, the
sign convention is such that a positive rotation in S tends to give a positive translation for
port A and a positive translation for port B.

6 Power Transmission Using Pulley Networks

6-2

The Ends move in same direction option is applicable to most pulley systems. The
Ends move in same direction option allows you to model a simplified representation
of a complex block-and-tackle system with belt ends that move in the same direction.

Inertia
To facilitate motion, include inertia in the pulley system. You can include inertia in a
pulley block by specifying a nonzero value for the Inertia parameter in the block
configuration settings. Another way to include inertia is to add a downstream inertia
block from the Simscape Driveline Inertias and Loads library or from the Simscape
Rotational Elements library. Attribute some initial velocity to the inertia, as needed, to
initiate motion in your pulley system.

Belt Tension
Maintain belt contact by including tensioners in your pulley system. Include no fewer
than the number of pulley pairs less one. For example, if there are five pulley pairs,
include at least four tensioners. You can build the tensioners using spring and damper
blocks.

Power Window System Pulley Mechanism
The Simscape Driveline “Power Window System” example contains a pulley network that
includes tensioners and inertia and follows recommended belt-direction practices.

 Best Practices for Modeling Pulley Networks

6-3

1 To open the model, at the MATLABcommand prompt, enter

sdl_power_window

The model contains the Mechanism subsystem, a masked subsystem that contains a
pulley network. The DC Motor subsystem and a Worm Gear block work together to
initiate motion in the pulley system. The system also contains an Inertia block.

2 To look inside the mask of the Mechanism subsystem, click the arrow in the lower-
left corner of the block.

6 Power Transmission Using Pulley Networks

6-4

The arrows show how the four Belt Pulley blocks rotate in response to the rotation of
the Cable Drum block. If the drum rotates in the opposite direction, the pulley
directions reverse, and the Lift Plate is lowered. There are six pulley pairs:

• Cable Drum and Pulley 1
• Pulley 1 and Pulley 2
• Pulley 2 and Pulley 3
• Pulley 3 and Pulley 4
• Pulley 4 and Cable Drum
• Pulley 2 and Pulley 4

Therefore, it is recommended that the system includes at least five tensioners. The
Lift Plate acts as a tensioner for the Pulley 2 and Pulley 4 pulley pair. The system
contains four additional tensioners. Open one of the tensioner subsystems.

 Best Practices for Modeling Pulley Networks

6-5

Each tensioner contains a spring and damper network that is parameterized with the
spring and damping coefficients of the cable.

3 Run the simulation and plot the results by clicking the Plot motor torque link in the
model canvas. When the Cable Drum has a negative velocity, the Lift Plate tends to
go up, as does the window. When the Cable Drum has a positive velocity, both the
Lift Plate and window tend to go down.

6 Power Transmission Using Pulley Networks

6-6

4 Open the Results Explorer by clicking the Explore simulation results link in the

model canvas. On the Results Explorer toolbar, click the settings button and, for
the Plot signals parameter, select Separate. Use Ctrl+click to open plots for:

• Mechanism > Cable Drum > A > v
• Pulley 1 > A > v
• Pulley 1 > B > v

 Best Practices for Modeling Pulley Networks

6-7

As expected, the velocity of the drum belt end at port B matches the velocity of the
Pulley 1 belt end at port B and is the opposite of the velocity of the Pulley 1 belt end at
port A.

See Also
Belt Drive | Belt Pulley | Inertia | Mechanical Translational Reference | Rope Drum |
Rotational Free End | Shock Absorber | Translational Damper | Translational Spring |
Variable Inertia | Worm Gear

6 Power Transmission Using Pulley Networks

6-8

Related Examples
• “Power Window System”

More About
• “Troubleshoot Pulley Network Issues” on page 18-6

 See Also

6-9

Gear Coupling Control Using
Clutches

• “How a Clutch Works” on page 7-2
• “Model Friction Clutches at a Fundamental Level” on page 7-3
• “Engage and Disengage Gears Using a Clutch” on page 7-4
• “Brake Motion Using Clutches” on page 7-9

An important requirement of a practical drivetrain is the ability to transfer rotational
motion and torque among spinning components at different speeds and gear ratios. In
general, a single set of gears is not sufficient to accomplish this transfer. Clutches allow
the drivetrain to transfer motion, torque, and force at different gear ratios under manual
or automatic control.

7

How a Clutch Works
A clutch makes two shafts spinning at different rates spin at a single rate by applying
torques that tend to accelerate one shaft and decelerate the other. The most common way
for a clutch to accomplish this action is with surface friction. Such a clutch can operate in
one of these modes of motion:

• Disengaged: the clutch applies no friction at all.
• Engaged but unlocked: the clutch applies kinetic friction, and the two shafts spin at
different rates.

• Engaged and locked: the clutch applies static friction, and the two shafts spin
together.

A clutch consists of mated frictional surfaces overlapping one another and connected on
either side to a shaft. If the clutch is disengaged, the frictional surfaces have no contact
and the shafts spin independently. To engage the clutch, contact between two surfaces is
induced by applying pressure normal to the clutch surfaces. The two surfaces in contact
and moving relative to one another experience kinetic friction, which causes them to
narrow their relative velocity. The friction acts to reduce the relative motion between the
two clutch plates and their connected shafts. At some critical combination of reduced
relative speed and pressure (normal force), the clutch locks, so that the two shafts are
spinning at the same rate. The shafts remain locked together as long as the transmitted
torque remains less than the static friction, which is proportional to the applied normal
force. If the clutch unlocks but is still engaged, it again applies kinetic rather than static
friction.

The transition between unlocked and locked states is discontinuous. Modeling a clutch
locking or unlocking event requires searching for the correct combination of pressure and
torque acting on the clutch. The locking and unlocking events are determined during
simulation by repeated and accurate zero-crossing detection. On simulating events and
solving constraints together with dynamics in Simscape models, see “Desktop Simulation”
(Simscape).

7 Gear Coupling Control Using Clutches

7-2

Model Friction Clutches at a Fundamental Level
The Disk Friction Clutch block requires only a single pressure signal to modulate the
kinetic friction. You fix all its other characteristics before starting simulation.

Modeling a friction clutch at a fundamental level requires direct control over the kinetic
and static friction torques. The Fundamental Friction Clutch block gives you that control.
With this block, you must specify, by either external signals or internal dynamics, the
kinetic friction and static friction limits (positive and negative) of the clutch as functions
of time.

 Model Friction Clutches at a Fundamental Level

7-3

Engage and Disengage Gears Using a Clutch
This example shows a gear being engaged, then disengaged, by a custom clutch. Torque
and motion are transferred from one shaft to another over a finite time interval.

A common task in drivetrain design is transferring motion and torque at different fixed
gear ratios. Drivetrains are typically designed to switch among a set of distinct gear
ratios. Implementing the switch from one gear ratio to another requires gradually
disengaging one set of driveline couplings and engaging another set. Clutches allow you
to engage and disengage driveline shafts from one another gradually. The Disk Friction
Clutch block represents a standard surface friction-based clutch that models this
behavior.

The model in this example uses a custom clutch subsystem that contains a Fundamental
Friction Clutch block. The Fundamental Friction Clutch block requires you to specify the
static and kinetic clutch friction more completely than the Disk Friction Clutch block
requires because it models clutches in greater detail. See also “Model Friction Clutches
at a Fundamental Level” on page 7-3.

Note You can model continuous motion-torque transfer with the Torque Converter block,
which simulates fluid viscosity instead of surface friction and does not lock.

Simulate Gear Engagement and Disengagement
1 Open the model. At the MATLAB command prompt, enter

sdl_clutch_custom

7 Gear Coupling Control Using Clutches

7-4

Custom Clutch Model with Programmed Clutch Pressure

 Engage and Disengage Gears Using a Clutch

7-5

Custom Clutch Subsystem

Model Components

• The clutch subsystem is positioned between the Inertia 1 and Simple Gear blocks
and reports the clutch mode (forward, reverse, locked).

• The PS Constant block replaces the sinusoidal signal as the torque input. The
torque sensor blocks are omitted.

• Simulink-PS Converter and PS-Simulink Converter blocks communicate between
physical signals in the Simscape environment and Simulink blocks such as Signal
Builder and Scope.

• The Signal Builder block provides the programmed clutch pressure signal,
normalized between 0 and 1, as shown in the following table. This signal is
converted to a physical pressure inside the clutch subsystem.

Time Range (Seconds) Signal Value
0–2 0
2–4 0–0.8 with constant slope
4–6 0.8

7 Gear Coupling Control Using Clutches

7-6

Time Range (Seconds) Signal Value
6–7 0.8–0 with constant slope

7–10 0
2 Open the Scopes and start the simulation. The normalized clutch pressure signal

follows the profile that you created in Signal Builder and determines the behavior of
the model.

a From 0 to 2 seconds, the velocity of Inertia 1 increases linearly because it is
subject to a constant torque.

b At 2 seconds, the clutch begins to engage, and Inertia 2 begins to spin. The
velocity of Inertia 1 continues to rise, although at a slower rate, because the two
inertias now share the external torque.

c At 4 seconds, the pressure reaches its maximum. At about 5.32 seconds, the
clutch locks. The driveshafts connected by the clutch now spin together. Inertia 1
and Inertia 2 continue to speed up at constant accelerations, Inertia 2 at half the
velocity of Inertia 1.

d At 6 seconds, the clutch begins to disengage as the pressure drops. Inertia 1 and
Inertia 2 continue to accelerate with the applied torque.

The clutch unlocks at about 6.73 seconds and fully disengages at 7 seconds. (The
clutch unlocks a little before completely disengaging because the pressure, even
before vanishing, becomes too small to maintain the lock.) Inertia 1 is still
accelerating. But Inertia 2, now free of the driveshaft and its torque, no longer
accelerates and instead spins at a constant rate without frictional loss.

While the two shafts are locked, from 5.32–6.73 seconds, Inertia 1 and Inertia 2
spin in a fixed 2:1 ratio, because of the Simple Gear.

 Engage and Disengage Gears Using a Clutch

7-7

How the Clutch Mode Indicates Locking and Unlocking
The Clutch mode signal indicates the relative motion of its two connected shafts. From 0
to 5.32 seconds, the two shafts are moving relative to one another. The follower (driven)
shaft is slower than the base (drive) shaft, so the mode signal is –1. Once the two shafts
lock, their relative velocity is 0, and the mode signal switches to 0. At 6.73 seconds, they
unlock, and the drive (base) shaft starts accelerating faster than the driven (follower)
shaft. The mode signal switches back to –1.

7 Gear Coupling Control Using Clutches

7-8

Brake Motion Using Clutches
A special case of transferring motion occurs when you want to brake the spinning of a
driveline component, slowing it down until it stops. The common way to brake the motion
is to couple the spinning component to a rotational ground. You can represent a rotational
ground with a Mechanical Rotational Reference block from the Simscape Foundation
library. Because a rotational ground cannot move, a driveline axis locked to a rotational
ground also cannot move. You can implement the gradual engagement or disengagement
of a driveline component with a rotational ground using a clutch, just as you use a clutch
to couple or uncouple two spinning shafts gradually.

Braking with a Two-Clutch System
1 Open the model. At the MATLAB command prompt, enter

sdl_clutch_acc_brake

The model features two clutches, one of which acts as a brake. The model also
includes frictional damping for greater realism. The simulation time is set to inf
(infinity). For simplicity, the model uses the Disk Friction Clutch block.

 Brake Motion Using Clutches

7-9

Clutch Model with Brake Clutch

This model uses the basic structure of inertia—clutch—gear—inertia. The first body,
Inertia Drive Shaft block, is driven by an external torque, and the initial velocities are
0. There is, however, another clutch for the second body, Inertia Output Shaft block,
that can couple Inertia Output Shaft to the Mechanical Rotational Reference block
and bring it to a stop.

The switching assembly is based on the clutch switch. You can change this switch to
apply a constant clutch pressure signal to either the Clutch Drive block or the Clutch
Brake block. The Fcn 1–u block ensures that the full clutch pressure is applied to
either one or the other, but not both at once. The Damper blocks apply viscous
(velocity-dependent) friction to the spinning of the Inertia Drive Shaft and the Inertia
Output Shaft.

The Accelerate or Brake block is programmed to provide a signal of 1 for the first 100
seconds of the simulation. It provides a signal of 0 for the second 100 seconds of the
simulation.

7 Gear Coupling Control Using Clutches

7-10

2 Start the model.

During the first 100 seconds, when the Accelerate or Brake block is set to 1, the
clutch pressure is applied to the Gear clutch. The Gear clutch engages and locks the
driver and driven shafts and causes them to rotate at the same velocity.

The Inertia Output Shaft is on the other side of the Simple Gear. The angular velocity
of the Inertia Drive Shaft is twice that of the Inertia Output Shaft because the gear
ratio of the Simple Gear block is 2, follower to base. In this switch mode, no clutch
pressure is applied to Brake Clutch, which remains unengaged.

After an initial transient, the system settles into a steady state of motion where the
external torque balances the friction losses.

At t = 100 seconds, the Accelerate or Brake block switches to 0 to disengage the gear
clutch and engage the brake clutch. The system undergoes another transient while
the Gear clutch disengages and Brake clutch engages.

The angular velocity of Inertia Drive Shaft and the driver shaft settles down to a new
steady state of 10 radians/second, twice its old speed.

Because the Gear clutch is now disengaged, the driven shaft and the Inertia Output
Shaft are no longer subject to a driving torque through Gear clutch. But the Brake
clutch is engaged and couples the Inertia Output Shaft to the immobile Mechanical
Rotational Reference. Once engaged, the kinetic friction of the Clutch Brake brings
the driven shaft and the Inertia Output Shaft to a stop.

To see the transient behavior at simulation start and when you switch the clutches:

1 Start the simulation and let it run for a short time. Then switch Clutch Switch to the
other mode.

2 After a short time, stop the simulation. Use the Autoscale feature of the Scopes to
capture the entire simulation sequence. The transients from the starting behavior
and the switching transition are visible.

For example, in these plots, the model was started with Clutch Switch set to 1 (Gear
clutch locked, Brake clutch disengaged, no braking). The velocities quickly climbed to
their steady-state values. Then Clutch Switch was changed at about 1830 seconds of
simulation time. Gear clutch disengaged and Brake clutch engaged, braking Inertia2. The
angular velocity of the driver shaft rose from 5 to 10 radians/second. The angular velocity
of the driven shaft dropped from 5 to 0. The angular velocity of Inertia2 dropped from 2.5
to 0.

 Brake Motion Using Clutches

7-11

7 Gear Coupling Control Using Clutches

7-12

Model Transmissions Using Gear
Ratios and Clutch Schedules

• “Transmission Design Principles and Best Practices” on page 8-2
• “Model a Two-Speed Transmission with Braking” on page 8-3
• “Model a CR-CR 4-Speed Transmission Driveline with Braking” on page 8-7

In a real drivetrain, you couple an input or drive shaft to one of many output or driven
shafts, or to one driven shaft with a choice of several gear ratios. The drivetrain then
requires several clutches to switch between gears. You couple one of the driven shafts or
one of the gear sets by engaging one of the clutches. You then switch to another output
shaft or another gear ratio by disengaging one clutch and engaging another.

You can also engage more than one clutch at a time to use multiple gear sets
simultaneously. Transmissions engage multiple gear sets at the same time to produce a
single effective gear ratio, or drive ratio. Changing gears requires disengaging one set of
clutches and engaging another set. You can specify the set of clutches to engage and
disengage for each gear ratio in a clutch schedule. Designing a clutch schedule and
shaping and sequencing the clutch pressure signals frequently constitute the most
difficult part of transmission design. A realistic transmission model must also include
losses due to friction and imperfect gear meshing.

To learn how to model transmissions using blocks from the Simscape Driveline gear and
clutch libraries, see “Model a Two-Speed Transmission with Braking” on page 8-3 and
“Model a CR-CR 4-Speed Transmission Driveline with Braking” on page 8-7.

8

Transmission Design Principles and Best Practices
When creating or modifying a transmission model:

• For a realistic simulation and to prevent acceleration singularities when torques are
applied, connect inertia blocks with nonzero inertia values to gear shafts.

• To specify the engaged and free clutches for proper transmission gearing, set up a
clutch schedule. Set all clutch pressures to 0 only if you want to disengage the
transmission completely, that is, place it in neutral.

Do not engage any more or fewer clutches than necessary, at any time during
simulation.

• If you redesign a transmission by adding or removing gears, you might also have to:

• Add or remove clutches.
• Redesign the clutch schedule.
• Add or remove gear shaft inertias.

On the relationship clutch pressure signals to solver choices and settings, see “Driveline
Simulation Performance” on page 16-2.

8 Model Transmissions Using Gear Ratios and Clutch Schedules

8-2

Model a Two-Speed Transmission with Braking
The example model sdl_transmission_2spd contains a driveline system that makes up
a simple yet complete transmission.

Simple Transmission with Two Gear-Clutch Pairs and Braking

The model is built on the sdl_clutch_acc_brake example model. This model contains
two driveline shafts or axes, with a constant actuating torque of 1 Newton-meter applied
to the driver shaft. Both the driver and the driven shafts are subject to small viscous
damping torques. The viscous torque constant μ is 0.001 newton-meters/(radians/second).
In the steady state, the driving and damping torques balance one another; the two shafts
spin at constant rates, the driver shaft at (1 N-m)/(0.001 N-m/(rad/s)) = 1000 rad/s. If
braking occurs, the driven shaft stops. There are now two selectable gears to couple the
two axes, instead of one. For more information on modeling viscous losses with nonideal
gear bearings instead of dampers, see “Model Gears with Losses” on page 11-4 and
“Constant and Load-Dependent Gear Efficiencies” on page 11-6.

 Model a Two-Speed Transmission with Braking

8-3

This transmission model couples the gears in a simple way, with each gear and the brake
associated with its own clutch. Coupling one gear requires engaging and locking the
corresponding clutch, while ensuring that the other two clutches are disengaged. The
brake clutch is directly activated by its own switch.

Setting Up the Gears, Clutches, and Brake
The two gears are Simple Gear blocks with different gear ratios, each connected in series
with its corresponding clutch. The two gear-clutch pairs are coupled in parallel. This
parallel assembly then couples the driver shaft to the driven shaft, with their two spinning
inertias. One gear is a “low” gear, the other a “high” gear. Following common usage for
automobile gears, the “low” and “high” labels refer to the angular velocity ratios.

Note The ratio of speeds in a gear is the reciprocal of the gear ratio.

• The low gear is the Gear High block. You can couple the low gear by engaging its
corresponding clutch, modeled by the Low gear clutch block. The gear ratio is 5:1, so
that the ratio of output to input (follower to base) angular speeds is 1/5. Such a gear
has a high torque transfer ratio of 5, from base to follower. In an automobile, such low
gears are used to accelerate the vehicle from a stop by transferring a large torque
down the drivetrain from the engine.

• The high gear is the Gear Low block, coupled by engaging its own clutch, represented
by the High gear clutch block. The gear ratio is 2:1, and the angular velocity ratio of
follower to base is 1/2, or 5/2 times the ratio in the low gear. The torque transfer ratio
is only 2 from base to follower. An automotive high gear is used for milder acceleration
or coasting once a vehicle is moving at a significant speed. The vehicle acceleration
generated by this gear is less than the acceleration that is generated by the low gear.

Switching on either the Neutral switch or the Brake switch disengages both gear
clutches. In either case, the driver shaft continues to spin, approaching a steady velocity,
subject to the competing driving and damping torques.

• Switching the transmission to neutral leaves the brake clutch disengaged and the
driven shaft free to spin. But without a driving torque, damping gradually brings the
driven shaft to a stop.

• Switching on the brake immediately locks the brake clutch and stops the driven shaft.

8 Model Transmissions Using Gear Ratios and Clutch Schedules

8-4

This simple transmission is based on mapping each transmission state one-to-one with an
engaged clutch. You cannot engage more than one clutch at a time without creating
conflicts between gear ratios or between the driver shaft and the rotational ground.

Controlling the Transmission State with a Clutch Schedule
The requirement to engage a certain clutch or set of clutches and disengage others, both
to implement transmission functions and to avoid motion conflicts between gears, is the
basis for all clutch schedules. Simulink provides a number of ways to implement clutch
schedules, depending on the complexity of the transmission and how much realism you
require for the clutch pressure signals.

Caution To ensure that the transmission states are implemented correctly and to avoid
motion conflicts among gear sets, check the clutch schedule for the transmission. To
make sure that the clutches are engaged, locked, unlocked, and disengaged in a realistic
and conflict-free manner, check the clutch pressure signal profiles. Unphysical or
conflicting clutch schedules and clutch pressure signals lead to simulation errors in
Simscape Driveline models.

For the sdl_transmission_2spd model, avoiding such conflicts leads to a unique
clutch schedule.

Clutch Schedule for the Simple Two-Speed Transmission

Transmission State Brake Clutch
State

Low Gear Clutch
State

High Gear Clutch
State

Neutral/Braked Disengaged/
Locked

Disengaged Disengaged

Low Gear Disengaged Locked Disengaged
High Gear Disengaged Disengaged Locked

The model contains a simple Clutch Control subsystem to implement the clutch schedule
and to output the clutch pressure signals to lock each clutch as needed.

 Model a Two-Speed Transmission with Braking

8-5

Clutch Control Subsystem for Simple Transmission Model

Adding Realistic Clutch Signals
The clutch control subsystem of this example is adequate for a simple model, but not
realistic. It contains unrealistic clutch pressure signals that rise and fall sharply. A full
clutch control model requires realistic clutch pressure signals that rise from and fall back
to zero in a smooth way. Greater realism requires a potentially more complex model.
During simulation, the Simscape and Simulink solvers can determine transmission motion
only if exactly two clutches are locked, or if all four clutches are unlocked. This model is
similar to a real transmission where improperly constrained clutches can lead to lockup
or damage to the transmission components. Changing the gear settings for the
transmission while maintaining this requirement is an example of the central problem of
transmission design.

For transmission and car examples with smoothed clutch pressure signals, see “Model a
CR-CR 4-Speed Transmission Driveline with Braking” on page 8-7 and “Complete
Vehicle Model” on page 3-2.

8 Model Transmissions Using Gear Ratios and Clutch Schedules

8-6

Model a CR-CR 4-Speed Transmission Driveline with
Braking

The sdl_transmission_4spd_crcr example models a realistic transmission. It uses a
CR-CR 4-Speed transmission subsystem to transfer motion and torque from one shaft and
inertia to another.

CR-CR 4-Speed Transmission Model

There is a constant driving torque from a torque source to the driver shaft (Inertia block
on the left). Two damping subsystems apply heavy and light viscous friction to the driver
and driven shafts, respectively. The two scope subsystems measure the clutch pressures.
The model workspace defines essential parameters for the blocks. For information on
creating, accessing, and changing model workspace variables, see “Specify Source for
Data in Model Workspace” (Simulink) and “Change Model Workspace Data” (Simulink).

 Model a CR-CR 4-Speed Transmission Driveline with Braking

8-7

The CR-CR 4-Speed transmission subsystem couples the driver to the driven shaft (Inertia
block on the right). If the transmission is disengaged, a brake clutch and fixed housing
allow you to brake the driven shaft.

For clarity, the major signal buses of the model have been bundled as vectors and directed
using Goto and From blocks. The Clutch Pressures are collected in the Scopes subsystem
for convenience.

Replacing Programmed with Manually Controlled Clutch
Pressures
The model represents the clutch control system using a Variant Subsystem block. To
switch between Programmed and Manual, the two clutch control modes that the variant
provides, click the links in the model window. During simulation, the manual subsystem
provides direct control over gear changes. To switch gears in manual control mode:

1 In the Simulink toolbar, change the simulation time to inf.
2 Run simulation.
3 Change gears during using the Select Gear widget.

8 Model Transmissions Using Gear Ratios and Clutch Schedules

8-8

Manual Clutch Control for CR-CR Transmission

 Model a CR-CR 4-Speed Transmission Driveline with Braking

8-9

Modeling Driveline Components

These sections introduce you to modeling specialized driveline components in the
Simscape Driveline environment. Using predefined blocks from the Simscape Foundation
and Simscape Driveline libraries and constructing custom components of your own are
both emphasized.

• “Specialized and Customized Driveline Components” on page 9-2
• “Rotational-Translational Couplings” on page 9-5
• “Modeling Transmissions” on page 9-7

9

Specialized and Customized Driveline Components

In this section...
“Optimal Physical Modeling in the Simscape Environment” on page 9-2
“Reasons for Specialized Driveline Components” on page 9-2
“Greater Model Fidelity and Performance” on page 9-3

Optimal Physical Modeling in the Simscape Environment
Within the Simulink environment, you follow best practice if you model driveline systems
by representing as much of the physical system as possible with Simscape Driveline and
Simscape components. Major advantages include these features that make it easier to
create accurate simulations of physical systems:

• Physical ports and connection lines supporting physical units
• Data logging
• Specialized solvers
• Consistent treatment of differential and algebraic constraint equations
• Customization with Simscape Foundation blocks and Simscape language

For custom block modeling with Simscape language, see “Custom Components”
(Simscape).

Reserve Simulink blocks and signals for nonphysical aspects of modeling, such as
nonphysical signals, algorithmic control, and model-level input/output tasks.

Reasons for Specialized Driveline Components
Simscape Driveline and Simscape physical connections help you create model
architectures with clear physical component boundaries. You can then increase the
fidelity of the model overall, or make only certain components more accurate
representations of the system.

In driveline modeling, there are several reasons for making a model more complex and
accurate.

9 Modeling Driveline Components

9-2

Complex Component Geometries

Driveline models abstract the motion of three-dimensional mechanical systems
constrained to move in one dimension. Some driveline components require extra
specification to capture underlying two- and three-dimensional geometry. An example in
the Simscape Driveline library is the Differential gear.

Internal Compliance Dynamics

Many standard Simscape Driveline components allow you to enable or disable modeling
of internal dynamics. For example, Generic Engine allows you to represent an engine with
instantaneous response for a simple, idealized model. To access a more complex and
accurate representation, enable the internal time lag for the Generic Engine block. You
can also create your own custom components (with internal compliance dynamics, for
example), to whatever degree of fidelity and complexity that you want.

Frictional Losses

Much of complex internal dynamic Simscape Driveline modeling comes from representing
the effect of both viscous and Coulomb friction.

• Viscous friction is proportional to the relative velocity of two surfaces in contact.
• Coulomb, or “sliding-sticky,” friction is proportional to the force normal to surfaces in

contact. For low relative velocities, Coulomb friction causes surfaces to lock and cease
relative motion.

Thus, friction models involve specification of relative geometry and motion, friction
coefficients, and normal forces, of surfaces in contact.

Components with internal friction models include gears, clutches, tires, and other
couplings, at different levels of optional complexity.

Greater Model Fidelity and Performance
Typically, greater fidelity of model components results in reduced simulation performance
and changes the tradeoff between simulation accuracy and speed. You can adapt your
simulation methods to handle greater fidelity, or reduce model fidelity to enhance
performance.

 Specialized and Customized Driveline Components

9-3

For a discussion of how model fidelity and performance are related to simulation settings,
see “Adjust Model Fidelity” on page 16-2 in “Driveline Simulation Performance” on
page 16-2.

9 Modeling Driveline Components

9-4

Rotational-Translational Couplings
In this section...
“Convert Between Rotational and Translation Motion” on page 9-5
“Use Simscape and Simscape Driveline Elements to Couple Rotation and Translation” on
page 9-5

Convert Between Rotational and Translation Motion
In general, mechanical systems mix rotational and translational motion. Rotational
dynamics and motion about an axis couples to translational dynamics and motion (velocity
v, momentum p, force F) at some distance (moment arm r) from the rotational pivot
through a constraint that captures only motion normal to the moment arm.

While most driveline components involve rotational motion around fixed axes, certain key
components transform translational and rotational motions from one to the other. Such
components map motion along lines and motion around circles to one another.

The rack-and-pinion is an example of a mixed-motion gear constraint. Tires and propellers
use contact friction to change driven rotational motion into forward or backward linear
motion.

Use Simscape and Simscape Driveline Elements to Couple
Rotation and Translation
Simscape and Simscape Driveline components that couple rotational and translational
motion have mixed mechanical conserving ports of both rotational and translational type.
Such blocks include wheels, tires, and certain gears:

• Leadscrew

 Rotational-Translational Couplings

9-5

• Rack & Pinion
• Tire (Magic Formula)
• Wheel and Axle

For an example of rotational-translational coupling with Tire (Magic Formula), see the
model in “Complete Vehicle Model” on page 3-2.

9 Modeling Driveline Components

9-6

Modeling Transmissions

In this section...
“Transmission Templates” on page 9-7
“Transmission Ports” on page 9-7
“Gear Input Signal” on page 9-7
“Initial States” on page 9-8
“Clutch Control” on page 9-9
“Inertias and Friction Losses” on page 9-9
“Real-Time Simulation” on page 9-10

Transmission Templates
The Transmissions library provides subsystem templates for modeling geared
transmission systems with four to nine speed settings. The templates use Simscape
Driveline and Simscape blocks to represent the transmission components—their gears,
clutches, and brakes. An embedded Simulink subsystem defines the clutch schedule.

Use the templates as starting points and examples for your own transmission models. The
template blocks are not library-linked, so you can modify them to suit your needs. Add,
remove, or reconnect blocks to change the transmission structure. To capture
transmission losses due to gear meshing or viscous damping, modify the block
parameters.

Transmission Ports
The transmission template blocks each have three ports. Ports B and F are rotational
conserving ports. They represent, interchangeably, the input and output shafts. The Gear
port is a Simulink input port that you can use to shift gears during simulation.

Gear Input Signal
The input signal to the Gear port sets the transmission gear according to the expression:

 Modeling Transmissions

9-7

Gear Setting =

Rev, if Gear ≤ − 1

1st, if ‐1 < Gear ≤ + 1

2nd, if +1 < Gear ≤ + 2
..., ...
nth if n− 1 < Gear ≤ n

.

The figure shows the correspondence between the transmission gear and the Gear input
signal.

Initial States
The transmission templates are configured to begin simulation in first gear. To change the
default initial gear, you must set the clutch and brake initial states to the values shown in
the transmission clutch schedules. You change the initial states in the Initial Conditions
tab of the block dialog boxes.

Consider the Lepelletier 6-Speed Transmission template. The transmission clutch
schedule shows the clutch and brake initial states for reverse gear to be [1 0 0 1 0] in the
order A-E. To begin simulation in reverse gear, you must then set the initial states in the
block dialog boxes as follows:

• Clutch A locked
• Clutch B unlocked
• Clutch C unlocked

9 Modeling Driveline Components

9-8

• Clutch D locked
• Clutch E unlocked

The Gear input signal must agree with the clutch and brake initial states. If the initial
states correspond to reverse gear, then the first value in the Gear input signal must also
correspond to reverse gear (Gear≤-1). Matching the two in this way helps to avoid
inconsistent states known to cause simulation errors.

Clutch Control
The clutch schedule converts the Gear input signal into clutch and brake input signals.
These signals drive the clutches and brakes, causing some to lock and others to unlock in
an orchestrated fashion. The resulting configuration determines which gears power flows
through—and therefore which gear the transmission is in.

A Gain block scales the input signals to the proper magnitudes for actuating the clutches
and brakes. These magnitudes depend on the actuation inputs expected by the Clutch and
Brake blocks. The actuation inputs can be:

• Shift linkage displacements in Dog Clutch blocks
• Normal forces in Cone Clutch and Loaded-Contact Rotational Friction blocks
• Plate pressures in Disk Friction Clutch blocks

Transfer Function blocks smooth the otherwise discrete input signals using first-order
filters. The smoothing allows the clutch state transitions to occur gradually over short
periods of time rather than instantaneously. The transfer function time constants
determine the characteristic time periods over which the clutch transitions occur.

Inertias and Friction Losses
Simscape Inertia blocks represent the inertias of transmission gears. These blocks
enhance the accuracy of the model. They also prevent simulation errors due to zero-
inertia gear sets disconnected from input and output shafts due to clutch unlocking.

By default, all frictional losses are set to zero. Frictional losses include losses due to
meshing in gears and viscous damping in gears, clutches, and brakes. To account for
frictional losses in your model, you must specify gear efficiencies and friction coefficients
in the block dialog boxes.

 Modeling Transmissions

9-9

Real-Time Simulation
Transmission components such as gears and clutches can slow down simulation by
introducing zero-crossing events and complex state-change calculations to your model. To
minimize their impact on simulation speed, several blocks provide optional
parameterizations suited for real-time simulation. These parameterizations include:

• Friction clutch approximation in dog clutches — Reduces model stiffness due
to backlash-induced vibrations.

• No meshing losses in gears — Eliminates gear friction calculations and associated
zero crossings due to motion reversals.

These block parameterizations are labeled Suitable for HIL. Use them if you intend
to run any type of real-time simulation, including hardware-in-loop (HIL) and software-in-
loop (SIL) simulation. By default, all gear and clutch blocks in the transmission templates
are set to use these parameterizations.

See Also
4-Speed CR-CR | 4-Speed Ravigneaux | 6-Speed Lepelletier | 7-Speed Lepelletier | 8-
Speed | 9-Speed

Related Examples
• “Transmission Testbed”

9 Modeling Driveline Components

9-10

Effective Inertias and Driveshafts

• “Model a Variable Inertia” on page 10-2
• “Model Driveshafts with Loss” on page 10-4

10

Model a Variable Inertia
You cannot vary the inertia value of an Inertia block during a simulation. However, you
can model a time-varying inertia indirectly with a Variable Ratio Transmission block. The
Inertia block interacts with the rest of the system, including any applied torque, only
through the gear with the time-varying gear ratio.

1 Place a Variable Ratio Transmission between a shaft and an Inertia.
2 Connect this constant Inertia to the Transmission base (B) or follower (F) port.
3 Vary the gear ratio g(t) of the Variable Ratio Transmission with an incoming physical

signal.

By changing the gear ratio, you change the effective inertia Ieff on the shaft from the
constant Inertia (value I). Ieff is the effective inertia presented to the rest of the system as
torque is applied, through the variable ratio gearbox, on the Inertia.

• If the B port is connected to the constant Inertia, Ieff = I·[g(t)]2

• If the F port is connected to the constant Inertia, Ieff = I/[g(t)]2

In this diagram, the Variable Ratio Transmission is contained within the Variable Ratio
Gear subsystem.

10 Effective Inertias and Driveshafts

10-2

Effective Variable Inertia with a Variable Ratio Gearbox

 Model a Variable Inertia

10-3

Model Driveshafts with Loss
Realistic driveshafts experience damping from viscous friction, which is proportional to
the driveshaft angular velocity. You can model such damping with the Rotational Damper
and, if necessary, build complex damping subsystems from this block.

10 Effective Inertias and Driveshafts

10-4

Specialized Gears

Make custom gears blocks the represent gear subcomponents. Create realistic models
with gears that experience frictional, thermal, or load-dependent losses.

11

Custom Planetary Gear Model
While the Simscape Driveline library contains a Planetary Gear, you can create your own
custom planetary gear using the Planetary Subcomponents sublibrary. The
sdl_gear_planetary_custom example model combines three Sun-Planet Bevel
subgears into a masked subsystem to model a coupled planetary gear train. The model
uses an Ideal Angular Velocity Source to place a fixed velocity demand on the gearbox
input, while damping the system on both the input and output driveshafts with Rotational
Damper blocks.

Custom Planetary Gear System and Subsystem

11 Specialized Gears

11-2

See Also
Compound Planetary Gear | Ideal Angular Velocity Source | Rotational Damper | Sun-
Planet Bevel

 See Also

11-3

Model Gears with Losses
The blocks of the Simscape Driveline Gears Library contain optional built-in models of
frictional losses, allowing you to represent nonideal gear couplings. In a nonideal gear
pair (1,2), the angular velocity, gear radii, gear teeth constraints, and gear ratio g12 =
r2/r1 = ω1/ω2 are unchanged. The transferred torque and power are reduced by:

• Coulomb friction between imperfectly meshing teeth surfaces on gears 1 and 2,
parameterized by an efficiency η, 0 < η ≤ 1. This efficiency depends on the torque load
on the teeth. But it is often approximated as constant.

• Viscous coupling of driveshafts with bearings, parameterized by viscous friction
coefficients μ.

Constant Efficiency
In the simplest nonideal gear loss model, the efficiency η12 of meshing in gear pair (1,2) is
constant, independent of load (torque or power transferred).

• The friction loss represented by η12 is effectively applied in full only if the transmitted
power is greater than the power threshold pth. Below this value, a hyperbolic tangent
function smooths the efficiency factor, lowering the efficiency losses to zero when no
power is transmitted.

• For gear sets with a carrier, η12 represents the ordinary efficiency, defined when the
carrier is not moving.

For gears with different efficiencies for the forward and reverse power flow:

• ForwardLoss = (1 – ηFB), ηFB is the torque transfer efficiency from the follower shaft to
the base shaft.

• BackwardLoss = (1/ηBF – 1), where ηBF is the torque transfer efficiency from the base
shaft to the follower shaft.

The frictional torque is calculated as:

Tf = T / 2((ForwardLoss + BackwardLoss)tanh(4p / pth) + ForwardLoss – BackwardLoss)

where:

• T is the transferred torque.

11 Specialized Gears

11-4

• p is the transferred power.
• pth is the power threshold at the base shaft above which full efficiency losses are in
effect.

For certain gear models, such as the Simple Gear, efficiency is assumed equal for both the
forward and reverse power flow, ηBF = ηFB.

Load-Dependent Efficiency
Making η dependent on the load is a way to make the loss model more accurate. For an
example of load-dependent efficiency, see the Simple Gear block reference page.

Geometry-Dependent Efficiency
Making η dependent on the geometry of gear meshing is another way to make the loss
model more accurate. For an example of geometry-dependent efficiency, see the
Leadscrew block reference page.

Viscous Friction
On a driveshaft mounted to a gear wheel by lubricated, nonideal bearings, the viscous
friction experienced by the axis is controlled by the viscous friction coefficient μ. The
viscous friction torque on a driveshaft “a” is –μa·ωa, where ωa is the angular velocity of the
driveshaft with respect to its mounting or carrier (if a carrier is present).

See Also

More About
• “Constant and Load-Dependent Gear Efficiencies” on page 11-6

 See Also

11-5

Constant and Load-Dependent Gear Efficiencies
Here, you revisit the sdl_transmission_2spd model in “Model a Two-Speed
Transmission with Braking” on page 8-3. You reconfigure the Simple Gears to model
power loss due to nonideal meshing. The effect of viscous bearing losses is ignored.

1 Open the sdl_transmission_2spd model and simulate to check the ideal gear
behavior.

2 Open the Gear High and the Gear Low blocks. Under Meshing Losses, in the
Friction model drop-down list, choose Constant efficiency for both. Enter
efficiencies less than 1, but greater than 0. For example, for the Gear Low block,
enter 0.7; and for the Gear High block, enter 0.95.

3 Leave the other settings as they are, including zero viscosity. Close the blocks.
4 Restart the model. The driveline runs at a lower efficiency and slightly smaller

angular velocities, because of the power losses. If you enter different efficiency
factors for the two gears, the effect of the loss is different if you switch between
gears.

Experiment with load-dependent efficiency. In the Friction model drop-down menu,
choose Load-dependent efficiency instead. In that case, you need more efficiency
model details to specify.

See Also

More About
• “Model Gears with Losses” on page 11-4

11 Specialized Gears

11-6

Specialized Clutches

Create realistic models with clutches that experience frictional losses and smooth
pressure signals.

12

Clutches, Clutch-Like Elements, and Coulomb Friction
Coulomb friction acts along the plane of contact between two solid surfaces, in opposition
to their actual or potential relative motion, and in proportion to the normal force pushing
the surfaces together. It encompasses both kinetic friction, applied when the surfaces are
in relative motion, and static friction, applied when they are locked together. Coulomb
friction is the basis for clutches and clutch-like elements that rely on normal forces to
keep surfaces in contact. When the relative speed of the surfaces becomes small enough
and a normal force is applied, these elements lock and move together.

Realistic friction models often include viscous friction. This type of frictional force or
torque is proportional to the relative translational or rotational velocity of the two
surfaces in contact.

The Clutches library contains various clutch types, including single- and multi-plate,
friction, cone, and dog (positive) clutches. You can customize the fundamental clutch
blocks to meet your requirements. The Brakes & Detents library provides brake, detent,
and friction blocks. These clutch-like elements apply Coulomb friction forces or torques
between pairs of translating or rotating axes in loaded contact. Many also allow inclusion
of viscous friction. Once engaged, clutches and brakes act to decelerate the relative
motion of surfaces in contact and can lock the surfaces together under certain conditions.

Clutches and clutch-like elements have a dual role in a driveline model. When engaged
but not locked, they act as dynamic elements, generating torques and forces between
driveline axes in relative motion. When locked, they act as conditional or dynamic
constraints, locking driveline axes to move together. Such constraints are conditional,
because they can unlock, unlike gears.

For more information on clutches and dynamic constraints, see “Driveline Degrees of
Freedom” on page 16-38 and “Driveline States — Effect of Clutches” on page 16-52.

See Also

More About
• “Model Clutches with Viscous Friction Loss” on page 12-3

12 Specialized Clutches

12-2

Model Clutches with Viscous Friction Loss
A source of loss in a clutch system coupling two driveshafts comes from viscous friction at
the two shaft bearings. Consider the sdl_clutch_custom model presented in “Engage
and Disengage Gears Using a Clutch” on page 7-4. Here you add a kinetic friction torque
proportional to the angular velocity on both sides of the clutch (viscous friction). The
Simscape Foundation library provides a Rotational Damper block that represents such a
damper. The angular motion of the driveshafts is relative to another component. Here the
angular velocities of the shafts are measured relative to rotational ground, represented by
Mechanical Rotational Reference. You can make a friction subsystem that applies such a
torque to any driveline axis connected to it. You can copy the subsystem and modify the
existing clutch model by connecting the two copies on either side of the clutch.

Note The velocity used in this damping is the absolute velocity of a single shaft relative
to rest. If you had two rotating driveline shafts and wanted to exert a relative damping
between them as a function of their relative velocities, use the same Rotational Damper
block connected between the two axes.

Creating a Torque Damping Subsystem
The viscous friction torque is τfric = –μω, where μ is the viscous friction coefficient. To
implement this torque:

1 You can start with your modified model from the “Engage and Disengage Gears Using
a Clutch” on page 7-4tutorial or with the sdl_clutch_custom model. In either case,
open the model.

2 From the Simscape library, copy Mechanical Rotational Reference, Rotational
Damper, and Connection Port into your model window.

3 From the Simscape Driveline Couplings & Drives > Springs & Dampers library,
copy the Rotational Damper block into your model window.

4 Connect the Mechanical Rotational Reference to the case (C) port of the Rotational
Damper and the rod (R) port of the Rotational Damper to the Connection Port.

5 For the Rotational Damper block, for the Damping coefficient, enter 0.3. Leave the
default units.

6 Select the whole connected three-block set, and create a subsystem. Name the
subsystem Damper 1.

 Model Clutches with Viscous Friction Loss

12-3

7 Create a second copy of Damper. Name the new subsystem Damper 2.

Rotational Damping Subsystem

Connecting and Simulating the Damped Clutch System
Complete and run the model.

1 Connect the two Damper subsystems to the driveline of the clutch model, as shown in
the figure.

12 Specialized Clutches

12-4

Damped Custom Clutch Model
2 Change the simulation time to 20 seconds.
3 Open the Scope blocks and click Start. To see the full plots, readjust the horizontal

axes of the Scope using Autoscale.

 Model Clutches with Viscous Friction Loss

12-5

The clutch pressure and external torques are applied as before. The shafts now rotate
slower because of the damping.

As before, Inertia2 begins to spin when the clutch starts to engage at 2 seconds. After the
clutch locks at 4 seconds, the body continues to accelerate, at a slower rate than it did
without damping. At about 6.7 seconds, the clutch begins to disengage and completely
disengages at 7 seconds. Subject to friction, Inertia2 now starts to slow down, unlike in
the friction-free case. Once the external torque is removed, its angular velocity drops
exponentially with time.

12 Specialized Clutches

12-6

The behavior of Inertia1 is more complex. It begins to spin up, at a lower rate than
before, because of the damping. From 2–7 seconds in the simulation, Inertia1 shares the
external torque with Inertia2 via the Clutch and the Simple Gear. After 7 seconds, the
external torque applies to Inertia1 alone. It continues to accelerate, at an ever-slowing
rate, because of the damping. If you let the simulation run without stopping, Inertia
approaches its terminal angular velocity, a state where the frictional torque exactly
balances the externally applied torque. This terminal velocity is ωterm = τext/μ or 1/0.3 =
3.3333 radians/second. The third Scope plot approaches this terminal value.

See Also

More About
• “Clutches, Clutch-Like Elements, and Coulomb Friction” on page 12-2

 See Also

12-7

Model Realistic Clutch Pressure Signals
The most critical addition that you can make to clutch models for greater realism is to
change the clutch pressure signals from step functions (0 to 1, or 1 to 0) to signals with a
smooth rise and fall. This greater realism results in a more complex model. At any
simulation time, it is critical for your model to determine transmission motion by locking
exactly the correct number of clutches. If all clutches are unlocked, the transmission is in
neutral. Changing the gear settings of a transmission while maintaining this requirement
is one of the central problems of transmission design.

Such transmission and vehicle models as sdl_transmission_4spd_crcr and sdl_car
switch gear settings without placing their transmissions in neutral. Controlling an actual
manual transmission requires moving the transmission out of gear and into neutral,
picking a new gear setting, and then putting the transmission into the new gear.

In the sdl_transmission_4spd_crcr example, with manual transmission control, you
can mimic these steps by turning on the Neutral Switch, changing the gear setting, then
turning off slipping the Neutral Switch.

In a programmed transmission control model, you can filter clutch pressures with
Transfer Fcn blocks, shaping the pressure signals from sharp steps to smooth rises or
falls.

“Automatic Transmission with a Dual Clutch” on page 12-9

12 Specialized Clutches

12-8

Automatic Transmission with a Dual Clutch
The sdl_vehicle_dual_clutch example model illustrates important points about both
physical and control design modeling using the Simscape and Simscape Driveline
environment and libraries.

The model represents an automatic transmission with two clutches. In an automatic
transmission, an engine management subsystem decides when to change gear ratio and
what the next gear ratio is. The pedal deflection imposed by a vehicle driver is converted
into a demanded engine torque. The torque demanded and the current forward vehicle
speed together determine which gear ratio the transmission switches to before it actually
switches (gear preselection). By gradually lowering the clutch pressure, the transmission
control system smoothly unlocks and disengages the clutch configuration for the current
gear ratio. At the same time, the control system gradually raises the clutch pressures to
achieve the new gear ratio by engaging and locking the new clutch configuration.

• The physical components of the transmission, from the engine, gears, and clutches, to
the vehicle body and tire, are modeled using Simscape Driveline blocks, with physical
ports and connections.

• The algorithmic control of the transmission, including the gear-switching and
transmission control, is modeled using normal Simulink blocks, with signal ports,
signal lines, and enabled subsystems.

 Automatic Transmission with a Dual Clutch

12-9

Vehicle with Dual Clutch Model

Predefined Simulation Options
The model is also set up to allow you to switch between two common simulation
configurations.To configure the model to simulate with a variable-step global solver or a
fixed-step local solver, click the links in the description.

You can directly adjust all the solver options by opening the model Configuration
Parameters and the network Solver Configuration dialog boxes.

See Also

More About
• “Model Realistic Clutch Pressure Signals” on page 12-8

12 Specialized Clutches

12-10

Control Vehicle Velocity

13

Control Vehicle Throttle Input Using a Powertrain
Blockset Driver

In this section...
“Open-Loop Simulation Using a Signal Builder Block” on page 13-2
“Closed-Loop Simulation Using a Longitudinal Driver Block” on page 13-4
“Simulation Comparison” on page 13-10

This example shows how to control throttle input to a Simscape Driveline vehicle model
using a Powertrain Blockset Longitudinal Driver block. You add the driver to an open-loop
model that uses a Signal Builder block for feedforward control. Adding the driver allows
you to model closed-loop control by supplying a reference velocity and a feedback loop.

Open-Loop Simulation Using a Signal Builder Block
In the open-loop simulation, a Simulink Signal Builder block is used to ramp up the
throttle. Simulate the model to see the open-loop response.

1 Open the model. At the MATLAB command prompt, enter this code.

See Code

%% Model information
modelName = 'sdl_vehicle_4wd';

%% Run the original model
open_system(modelName)

2 Enable the signal that goes to the Motor RPM scope block for Simulink data logging
and viewing with the Simulation Data Inspector.

See Code
%% PS-S Converter1 information
pStoSConverter1Name = 'PS-Simulink Converter1';
pStoSConverter1Path = [modelName,'/',pStoSConverter1Name];
pStoSConverter1PortHandles = get_param(pStoSConverter1Path,'PortHandles');
pStoSConverter1Inport = pStoSConverter1PortHandles.LConn(1,1);
pStoSConverter1Outport = pStoSConverter1PortHandles.Outport(1,1);

%% Enable the signal that goes to the Vehicle Speed scope block for
% Simulink(TM) data logging and viewing with the Simulation Data Inspector
set_param(pStoSConverter1Outport,'DataLogging','on')

13 Control Vehicle Velocity

13-2

The logging badge marks the signal in the model.

3 Increase simulation time to get steady-state results. Simulate the model.

See Code

%% Increase simulation time
set_param(modelName,'StopTime','30')

%% Simulate the model
sim(modelName)
% Plot the vehicle speed, the engine speed, and the throttle input.
sdl_vehicle_4wd_plot1speed

 Control Vehicle Throttle Input Using a Powertrain Blockset Driver

13-3

Even though the throttle input is nonzero at simulation time 0, the vehicle rolls down
the hill at first because the input is too small to overcome the gravitational force of
the incline. When the input is large enough, the vehicle accelerates up the hill and
settles at a velocity of ~20 km/h.

Closed-Loop Simulation Using a Longitudinal Driver Block
To control throttle input, add a Powertrain Blockset Longitudinal Driver block.

13 Control Vehicle Velocity

13-4

1 Add a Longitudinal Driver block to the model.

a Expand the model window to fit the Longitudinal Driver block.

See Code

%% Update the model canvas
modelWindowNewLocation = [47 100 1072 723];

% Increase the size of the model window
set_param(modelName,'location',modelWindowNewLocation);

b Add the Longitudinal Driver block.

See Code

%% Longitudinal Driver block name, path,%
% and position information
longDriverName = 'Driver';
longDriverLibPath = 'autolibscenario/Longitudinal Driver';
longDriverPath = [modelName,'/Longitudinal Driver'];
longDriverPos = [710 15 905 135];

% Add a driver block

 Control Vehicle Throttle Input Using a Powertrain Blockset Driver

13-5

add_block(longDriverLibPath,longDriverPath,...
 'position',longDriverPos)

% Longitudinal Driver block port information
longDriverPortHandles = get_param(longDriverPath,'PortHandles');
longDriverPortVelRef = longDriverPortHandles.Inport(1,1);
longDriverPortVelFdbk = longDriverPortHandles.Inport(1,2);
longDriverPortGrade = longDriverPortHandles.Inport(1,3);
longDriverPortInfo = longDriverPortHandles.Outport(1,1);
longDriverPortAccelCmd = longDriverPortHandles.Outport(1,2);
longDriverPortDecelCmd = longDriverPortHandles.Outport(1,3);

c Change the source of throttle input from the Signal Builder block Throttle port
to the Longitudinal Driver block AccelCmd port and terminate the unconnected
Throttle port with a Terminator block.

See Code
%% Signal Builder block information
signalBuildName = 'Test';
signalBuildPath = [modelName,'/',signalBuildName];
signalBuildPortHandles = get_param(signalBuildPath,'PortHandles');
signalBuildPortIncline = signalBuildPortHandles.Outport(1,1);
signalBuildPortWind = signalBuildPortHandles.Outport(1,2);
signalBuildPortThrottle = signalBuildPortHandles.Outport(1,3);

%% Throttle Goto block information
goToThrottleName = 'Goto';
goToThrottlePath = [modelName,'/',goToThrottleName];
goToThrottlePortHandle = get_param(goToThrottlePath,'PortHandles');
goToThrottleInport = goToThrottlePortHandle.Inport(1,1);
goToThrottleNewPos = [950 66 985 84];

% Delete the connection line from the Signal Builder to the Throttle Goto
delete_line(modelName,signalBuildPortThrottle,goToThrottleInport)

% Move the throttle Goto to the Longitudinal Driver
set_param(goToThrottlePath, 'position', goToThrottleNewPos)

% Add a connection line from the Longitudinal Driver AccelCmd
% port to the Throttle goto
add_line(modelName,longDriverPortAccelCmd,goToThrottleInport)

%% Terminator0 Block Information
% Terminator0 block name, path, and position information
terminator0Name = 'Terminator0';
terminatorLibPath = 'simulink/Sinks/Terminator';
terminator0Path = [modelName,'/',terminator0Name];
terminator0Pos = [200 5 220 25];

% Add Terminator0 block
add_block(terminatorLibPath,terminator0Path,...

13 Control Vehicle Velocity

13-6

 'position',terminator0Pos)

% Terminator0 port information
terminator0PortHandle = get_param(terminator0Path,'PortHandles');
terminator0Inport = terminator0PortHandle.Inport(1,1);

% Connect Longitudinal Driver AccelCmd Outport to the Thr Goto inport
add_line(modelName,signalBuildPortThrottle,terminator0Inport)

d Terminate the Info and DeclCmd outports on the Longitudinal Driver block

See Code
%% T1
% Terminator1 block name, path, and position
% information
terminator1Name = 'Terminator1';
terminatorLibPath = 'simulink/Sinks/Terminator';
terminator1Path = [modelName,'/',terminator1Name];
terminator1Pos = [955 105 975 125];

% Add Terminator1 block
add_block(terminatorLibPath,terminator1Path,...
 'position',terminator1Pos)

% Terminator1 port information
terminator1PortHandle = get_param(terminator1Path,'PortHandles');
terminator1Inport = terminator1PortHandle.Inport(1,1);

% Connect Longitudinal Driver DecelCmd Outport
% to Terminator1 inport
add_line(modelName,longDriverPortDecelCmd,terminator1Inport)

%% T2
% Terminator2 block name, path, and position information
terminator2Name = 'Terminator2';
terminatorLibPath = 'simulink/Sinks/Terminator';
terminator2Path = [modelName,'/',terminator2Name];
terminator2Pos = [955 25 975 45];

% Add Terminator2 block
add_block(terminatorLibPath,terminator2Path,...
 'position',terminator2Pos)

% Terminator2 port information
terminator2PortHandle = get_param(terminator2Path,'PortHandles');
terminator2Inport = terminator2PortHandle.Inport(1,1);

% Connect Longitudinal Driver Info Outport to Terminator2 inport
add_line(modelName,longDriverPortInfo,terminator2Inport)

e Input a 5.84 reference velocity to the Longitudinal Driver block VelRef port
using a Constant block.

 Control Vehicle Throttle Input Using a Powertrain Blockset Driver

13-7

See Code
%% Reference Velocity
ref_vel = '5.84';
constantLibPath = 'simulink/Commonly Used Blocks/Constant';
referenceVelocityName = 'Constant';
referenceVelocityPath = [modelName,'/',referenceVelocityName];
referenceVelocityPos = [655 20 685 50];
add_block(constantLibPath,referenceVelocityPath,...
 'position',referenceVelocityPos)
set_param(referenceVelocityPath,'Value',ref_vel)

% Reference Velocity port information
refernceVelocityPortHandle = get_param(referenceVelocityPath,'PortHandles');
refernceVelocityOutport = refernceVelocityPortHandle.Outport(1,1);

add_line(modelName,refernceVelocityOutport,longDriverPortVelRef)

f Input the incline angle signal from the Signal Builder block to the Longitudinal
Driver block by connecting the Incline outport to the Grade inport.

See Code

%% Connect incline output port to Grade input port
add_line(modelName,signalBuildPortIncline,...
 longDriverPortGrade,'autorouting','on')

g Input the velocity feedback signal to the Longitudinal Driver block using a Unit
Conversion block to convert from km/hr to m/s.

See Code
%% Unit Conversion
% UnitConvert0 block name, path, and position information
unitConvert0Name = 'Unit Conversion';
unitConvert0LibPath = 'simulink/Signal Attributes/Unit Conversion';
unitConvert0Path = [modelName,'/',unitConvert0Name];
unitConvert0Pos = [565 54 635 96];

% Add block
add_block(unitConvert0LibPath,unitConvert0Path,...
 'position',unitConvert0Pos)

%% UunitConvert0 port information
unitConvert0PortHandle = get_param(unitConvert0Path,'PortHandles');
unitConvert0Inport = unitConvert0PortHandle.Inport(1,1);
 unitConvert0Outport = unitConvert0PortHandle.Outport(1,1);

%% Connect Longitudinal Driver AccelCmd Outport to Goto Throttle inport
add_line(modelName,unitConvert0Outport,...
 longDriverPortVelFdbk,'autorouting','on')

%% Connect PS-S Converter Outport to Longitudinal Driver AccelCmd Inport

13 Control Vehicle Velocity

13-8

add_line(modelName,pStoSConverter1Outport,...
 unitConvert0Inport,'autorouting','on')

2 Simulate the closed-loop model using the Simple Tire blocks and plot the results.

See Code

%% Simple
sdl_vehicle_4wd_settires(bdroot,'Simple');
sim(modelName)
% Plot the vehicle speed, the engine speed, and the Throttle input.
sdl_vehicle_4wd_plot1speed

The drive block increases the throttle input rapidly at the beginning of simulation due
to the difference between the velocity feedback and reference signals.

 Control Vehicle Throttle Input Using a Powertrain Blockset Driver

13-9

Simulation Comparison
Compare the open and closed-loop results using the Simulation Data Inspector.

See Code

%% Get Simulation (TM) Data Inspector run IDs for
% the last two runs
runIDs = Simulink.sdi.getAllRunIDs;
runBaseline = runIDs(end - 1);
runSimple = runIDs(end);

% Open the Simulation Data Inspector
Simulink.sdi.view

compBaselinePartition = Simulink.sdi.compareRuns(runBaseline,...
 runSimple);

To see the results in the Simulation Data Inspector, click the Compare icon and then,
under Filter Comparisons, click PS-Simulink Converter1:1.

13 Control Vehicle Velocity

13-10

The first plot overlays the results from the open and closed-loop simulations. It shows how
much faster the controlled vehicle goes to steady state.

The second plot shows the numerical difference in the results from the two simulations. It
shows how much the two signals differ at the beginning of the simulation and how they
eventually reach the same steady state.

You can also examine the results for other tire blocks.

See Code for Magic Formula Tire
%% Magic
sdl_vehicle_4wd_settires(bdroot,'Mformula');

 Control Vehicle Throttle Input Using a Powertrain Blockset Driver

13-11

sim(modelName)
% Plot the vehicle speed, the engine speed, and the throttle input.
sdl_vehicle_4wd_plot1speed

See Code for Friction Parameterized Tire

%% Friction
sdl_vehicle_4wd_settires(bdroot,'Friction');
sim(modelName)
% Plot the vehicle speed, the engine speed, and the throttle input.
sdl_vehicle_4wd_plot1speed

See Also
Constant | Terminator | Tire (Friction Parameterized) | Tire (Magic Formula) | Tire
(Simple) | Unit Conversion

Related Examples
• “Vehicle with Four-Wheel Drive”

More About
• “Compare Simulation Data” (Simulink)

13 Control Vehicle Velocity

13-12

Drivetrain Disturbances

• “Model Drivetrain Noise” on page 14-2
• “Model and Detect Drivetrain Faults” on page 14-13

14

Model Drivetrain Noise
This example shows how to inject a fault into a drivetrain using a Torque Noise Source
block. Injecting noise into your model allows you to predict how your actual physical
system responds when it experiences environmental or internal disturbances. It also
allows you to test the robustness and responsiveness of your control system.

In the example, the noise is injected into one of the sprockets on a metal sheet feeder that
is moving a piece of stock. Although you can perform most of the steps in this example
using tools that the Simulink and Simscape Driveline user interfaces provide,
programmatic commands are supplied. You can combine the programmatic commands to
create a script for parameter sweeps.

1 Open the model. At the MATLAB command prompt, enter:

model = 'sdl_sheet_metal_feeder';
open_system(model)

2 Simulate the model and plot the results.

14 Drivetrain Disturbances

14-2

Script for Generating and Plotting Simulation Results

%% Simulate
sim(model)

%% Define the data
simlog1 = simlog_sdl_sheet_metal_feeder;
time = simlog1.Sensor_Stock.Motion_Sensor.x.series.time;
sheetPosition = simlog1.Sensor_Stock.Motion_Sensor.x.series.values;
sprocketTorque = simlog1.Sprocket_to_Belt_R.t.series.values;

%% Create figure
figure1 = figure('NumberTitle','off',...
 'Name','Simscape Results: sdl_sheet_metal_feeder_noise',...
 'OuterPosition',[565 52 733 822]);

%% Create subplot 1: Sprocket to Belt L Tourque versus Time
% Create axes for
axes1 = axes('Parent',figure1,...
 'Position',[0.13 0.709 0.775 0.216]);
hold(axes1,'on')
box(axes1,'on')
grid(axes1,'on')
% Create title & axis labels
title('Stock Position versus Time')
% xlabel('Time (s)')
ylabel('m')
% Create plot
plot(time,sheetPosition,'Parent',axes1)

%% Create subplot 2: Sprocket to Belt R Tourque versus Time
% Create axes
axes2 = axes('Parent',figure1,...
 'Position',[0.13 0.409 0.775 0.2156]);
hold(axes2,'on')
box(axes2,'on')
grid(axes2,'on')
% Create title & axis labels
title('Sprocket-to-Right-Belt Torque versus Time')
xlabel('Time (s)')
ylabel('N*m')
% Create plot with linked axes
plot(time,sprocketTorque,'Parent',axes2)
linkaxes([axes1,axes2],'x')

 Model Drivetrain Noise

14-3

3 Add, configure, connect, and arrange these blocks as shown:

• Step block — Specify 7.5 for the Step time parameter and 300 for the Final
value parameter.

• Simulink-PS Converter block
• Mechanical Rotational Reference block
• Torque Noise Source block — For the Sample time, specify 1e-1, for

Repeatability, select Specify seed, and for Seed specify 0.

14 Drivetrain Disturbances

14-4

Script for Adding, Configuring, Connecting, and Arranging Blocks
%% Expand the model window to make room for new blocks
set_param(model,'Location',[108 73 881 682])

%% Add and configure Step block
% Define block
stepPath = [model,'/Step'];
stepLib = 'simulink/Sources/Step';
stepPosition = [-195 205 -165 235];
stepTime = '7.5';
stepValue = '300';
% Add block
add_block(stepLib,stepPath,'Position',stepPosition)
% Configure Step block
set_param(stepPath,'Time',stepTime,...
 'After',stepValue)
% Check block configuration
open_system(stepPath)
pause(3);
close_system(stepPath)
% Get output port
stepPortHandle = get_param(stepPath,'PortHandles');
stepOutport = stepPortHandle.Outport;

%% Add and configure S-PS Converter block
% Define block
sPSConvPath = [model,'/Simulink-PS Converter'];
sPSConvLib = ...
 'nesl_utility/Simulink-PS Converter';
sPSConvPathPosition = [-115 205 -85 235];
% Add block
add_block(sPSConvLib,sPSConvPath,'Position',sPSConvPathPosition)
% Get output port
sPSConvPortHandle = get_param(sPSConvPath,'PortHandles');
sPSConvInport = sPSConvPortHandle.Inport;
sPSConvConPort = sPSConvPortHandle.RConn(1,1);

%% Add Mechanical Rotational Reference block
% Define block
mechRotRefPath = [model,'/Mechanical Rotational Reference'];
mechRotRefLib = ...
 'fl_lib/Mechanical/Rotational Elements/Mechanical Rotational Reference';
mechRotRefPosition = [-40 255 -20 275];
% Add block
add_block(mechRotRefLib,mechRotRefPath,'Position',mechRotRefPosition)
%% Get output port
mechRotRefPortHandle = get_param(mechRotRefPath,'PortHandles');
mechRotRefConPort = mechRotRefPortHandle.LConn(1,1);

%% Add and configure Torque Noise Source block
% Define block
torqueNoisePath = [model,'/Torque Noise Source'];
torqueNoiseLib = 'sdl_lib/Sources/Torque Noise Source';
torqueNoisePosition = [25 210 65 250];
%% Add block
add_block(torqueNoiseLib,torqueNoisePath,'Position',torqueNoisePosition)
%% Get output port
torqueNoisePortHandle = get_param(torqueNoisePath,'PortHandles');
torqueNoiseConPort1 = torqueNoisePortHandle.LConn(1,1);
torqueNoiseConPort2 = torqueNoisePortHandle.LConn(1,2);

 Model Drivetrain Noise

14-5

torqueNoiseConPort3 = torqueNoisePortHandle.RConn(1,1);
%% Configure block
set_param(torqueNoisePath, 'sample_time','1e-1',...
 'repeatability','3')
%% Check block configuration
open_system(torqueNoisePath)
pause(3);
close_system(torqueNoisePath)

%% Get block points for connecting as a branched line
torqueNoisePortPoints = get_param(torqueNoisePath,'PortConnectivity');
[torqueNoiseLConnPoints1,torqueNoiseLConnPoints2,torqueNoiseRConnPoints]...
 = torqueNoisePortPoints.Position;
sprocketPath = [model,'/Sprocket to Belt R'];
sprocketPortHandle = get_param(sprocketPath,'PortHandles');
sprocketConPort1 = sprocketPortHandle.RConn(1,1);
sproketPortPoints = get_param(sprocketPath,'PortConnectivity');
[sproketLConnPoints,sproketRConnPoints] = sproketPortPoints.Position;

%% Connect blocks
add_line(model,stepOutport,sPSConvInport)
add_line(model,sPSConvConPort,torqueNoiseConPort1)
add_line(model,mechRotRefConPort,torqueNoiseConPort2)
add_line(model,[sproketLConnPoints;torqueNoiseRConnPoints])

%% Hold to check connections
pause(5);

14 Drivetrain Disturbances

14-6

4 Simulate the model and plot the results.

Script for Generating and Plotting Simulation Results
%% Simulate model
sim(model)

%% Define the datalog variable
simlog2 = simlog_sdl_sheet_metal_feeder;
time = simlog2.Sensor_Stock.Motion_Sensor.x.series.time;
sheetPosition = ...
 simlog2.Sensor_Stock.Motion_Sensor.x.series.values;
sprocketTorque = simlog2.Sprocket_to_Belt_R.t.series.values;
noiseTorque = simlog2.Torque_Noise_Source.t.series.values;

%% Update plots 1 & 2
figure1;
hold on
axes1;
hold on
plot(time, sheetPosition,'Parent',axes1,'Linestyle','--','Color','r')
axes2;
hold on
plot(time,sprocketTorque,'Parent',axes2','Linestyle','--','Color','r')

 Model Drivetrain Noise

14-7

%% Create subplot 3: Sprocket to Belt R Tourque versus Time
% Create axes
axes3 = axes('Parent',figure1,...
 'Position',[0.13 0.11 0.775 0.200]);
hold(axes3,'on')
box(axes3,'on')
grid(axes3,'on')

% Create title and axis labels
title('Noise Source Torque versus Time')
xlabel('Time (s)')
ylabel('N*m')
linkaxes([axes1,axes2,axes3],'x')

% Create plot
plot(time,noiseTorque,'Parent',axes3,'Color','r')
legend(axes1,'No Noise','Noise','Location','southeast');
ylim(axes3,[-120 120]);

14 Drivetrain Disturbances

14-8

 Model Drivetrain Noise

14-9

The noise injected at simulation time, t = 7.5 seconds introduces torque
disturbances.

5 Zoom in to see the effects of the disturbance.

Script for Zooming In

%% Zoom to examine data at peak noise
xlim(axes3,[12.0 14.50]);
ylim(axes3,[-120 120]);

14 Drivetrain Disturbances

14-10

 Model Drivetrain Noise

14-11

When the noise source torque exceeds ±50 N*m, it most significantly effects the
torque applied by the sprocket and, therefore, the position of the stock.

See Also
Mechanical Rotational Reference | Rotational Damper | Simulink-PS Converter |
Sinusoidal Torque Source | Step | Torque Noise Source

14 Drivetrain Disturbances

14-12

Model and Detect Drivetrain Faults
This example shows how to detect and respond to a fault in a drivetrain using a Rotational
Damper block. The Rotational Damper block allows you to specify the damping coefficient
as a function of temporal or behavioral triggers. You can program the damping coefficient
to change at a particular time in the simulation or when the number of shocks for a given
acceleration exceeds a limit to model fault behavior. Fault modeling allows you to predict
how your actual physical system responds when it experiences real faults. It also allows
you to test the robustness and responsiveness of your control system.

In the example, the fault is detected by a damper that is attached to a flexible shaft.
Although you can perform most of the steps in this example using the tools that the
Simulink and Simscape Driveline user interfaces provide, scripts are supplied. You can
combine the scripts into a larger script for parameter sweeps.

1 Open the model. At the MATLAB command prompt, enter:

model = 'sdl_flexible_shaft';
open_system(model)

This model contains two flexible aluminum shafts modeled using a lumped parameter
approach. A motor drives the motor shaft. A viscous damper is connected to the load
shaft. The viscous damper is represented by a Rotational Damper block from the

 Model and Detect Drivetrain Faults

14-13

Simscape > Foundation Library > Mechanical > Rotational Elements library.
The Foundation Library Rotational Damper block is not able to detect or respond to
faults.

2 Simulate the model and plot the results.

Script for Generating and Plotting Simulation Results
%% Simulate Model
sim(model)

%% Get simulation results
simlog01 = simlog_sdl_flexible_shaft;
simlog_t = simlog01.Clutch.P.series.time;
simlog_pClutch = simlog01.Clutch.P.series.values('Pa');
simlog_wMotor = simlog01.Shaft_Motor.F.w.series.values('rad/s');
simlog_wLoad = simlog01.Shaft_Load.F.w.series.values('rad/s');

%% Plot results
X1 = simlog_t;
YMatrix1 = [simlog_wMotor simlog_wLoad];
Y1 = simlog_pClutch;

% Create figure
figure1 = figure('Name','sdl_flexible_shaft',...
 'OuterPosition',[107 336 733 822]);

% Create axes
axes1 = axes('Parent',figure1,...
 'Position',[0.13 0.709 0.775 0.216]);
hold(axes1,'on');

% Activate the left side of the axes
yyaxis(axes1,'left');

% Create multiple lines using matrix input to plot
plot1 = plot(X1,YMatrix1,'LineWidth',2);
set(plot1(1),'DisplayName','Motor Shaft', 'Color', 'k');
set(plot1(2),'DisplayName','Load Shaft', 'Color', 'b');

% Create ylabel
ylabel('Speed (rad/s)');

% Comment/uncomment the following line to remove/
% preserve the Y-limits of the axes
ylim(axes1,[-100 250]);

% Set the remaining axes properties
set(axes1,'YColor',[0 0.447 0.741]);

% Activate the right side of the axes
yyaxis(axes1,'right');

% Create plot
plot(X1,Y1,'DisplayName','Clutch Pressure','LineWidth',2, 'Color', 'r');

% Create ylabel
ylabel('Pressure (Pa)');

% Comment/uncomment the following line to remove/

14 Drivetrain Disturbances

14-14

% preserve the Y-limits of the axes
ylim(axes1,[0 2000000]);

% Set the remaining axes properties
set(axes1,'YColor',[0.85 0.325 0.098]);
% Create xlabel
xlabel('Time (s)');

% Create title
title('Shaft Speeds and Clutch Pressure');

% Uncomment the following line to preserve the X-limits of the axes
% xlim(axes1,[0 0.2);

% Set the remaining axes properties
set(axes1,'LineStyleOrderIndex',2);
box(axes1,'on');
grid(axes1,'on');

% Create legend
legend1 = legend(axes1,'show');
% set(legend1,'Location','best');
set(legend1,...
 'Position',[0.6944 0.9125 0.1982 0.07270]);

At the start of the simulation, the clutch is unlocked and the driven shaft is free. The
initial velocity of the motor shaft is the specified 200 rad/s and the system starts at
steady state. The oscillations triggered by the engaging and disengaging of the clutch
are due to the flexibility in the shafts.

3 Replace the Simscape damper with the Simscape Driveline Rotational Damper, which
is in the Simscape > Driveline > Couplings & Drives > Springs & Dampers
library. Label the new block Faultable Damper.

 Model and Detect Drivetrain Faults

14-15

Script for Replacing the Rotational Damper Block
%% Replace Rotational Damper from Foundation Library with
% Faultable Rotational Damper from the Simscape Driveline Library

% Define Unfaultable Damper Block
foundationDamper = [model,'/Damping Bearing'];

% Get Unfaultable Damper Block Damping Coefficient
dampingCoefficient = get_param(foundationDamper,'D');

% Get Unfaultable Damper Block Position
damperPosition = get_param(foundationDamper, 'Position');

% Delete Unfaultable Damper Block
delete_block(foundationDamper)

% Add Faultable Damper Block
faultableDamperLib = ...
 'sdl_lib/Couplings & Drives/Springs & Dampers/Rotational Damper';
faultableDamperPath = [model,'/Faultable Damper'];
add_block(faultableDamperLib,faultableDamperPath,...
 'Position',damperPosition,...
 'NamePlacement', 'alternate',...
 'D',dampingCoefficient)

4 Enable a time-based fault and specify a response that includes a change in the
damping coefficient and the generation of a MATLAB warning. Use these values for
the damper Fault parameters:

• Enable faults — Enabled

14 Drivetrain Disturbances

14-16

• Faulted damping coefficient — 10
• Enable temporal fault trigger — Enabled
• Simulation time for fault event — 0.07
• Reporting when fault occurs — Warning

Script for Configuring the Rotational Damper Block Using a Timed Fault
%% Define Faultable Damper Block Parameters
underDamp = '10';
overDamp = '150';

faultTime = '.06';

aMaxDef = '100';
aMaxHigh = '400';
aMaxLow = '50';

shockNMaxDef = '1';
shockNMaxHigh = '5';
shockNMaxLow = '2';

disabled = '0';
enabled = '1';

none = '1';
warning = '2';
error = '3';

%% Parameterize a Timed Fault
set_param(faultableDamperPath,...
 'enable_faults', enabled,... % Enable faults
 'b_fault', underDamp,... % Faulted damping coefficient
 'temporal_fault', enabled,... % Enable temporal fault trigger
 'fault_time', faultTime,.... % Simulation time for fault event
 'shock_fault', disabled,... % Disable behavioral fault trigger
 'acceleration_limit', aMaxDef,... % Maximum permissible acceleration
 'shock_limit', shockNMaxDef ,... % Maximum number of shocks
 'report_fault', warning) % Reporting when fault occurs

5 Simulate the model and plot the results.

Script for Generating and Plotting Simulation Results
%% Simulate
sim(model)

%% Get Simulation Results
simlog02 = simlog_sdl_flexible_shaft;
simlog_t02 = simlog02.Clutch.P.series.time;
simlog_pClutch02 = simlog02.Clutch.P.series.values('Pa');
simlog_wMotor02 = simlog02.Shaft_Motor.F.w.series.values('rad/s');
simlog_wLoad02 = simlog02.Shaft_Load.F.w.series.values('rad/s');

%% Plot Results
X2 = simlog_t02;
YMatrix2 = [simlog_wMotor02 simlog_wLoad02];
Y2 = simlog_pClutch02;

 Model and Detect Drivetrain Faults

14-17

% Create axes
axes2 = axes('Parent',figure1,...
 'Position',[0.125 0.4 0.775 0.216]);
hold(axes2,'on');

% Activate the left side of the axes
yyaxis(axes2,'left');

% Create multiple lines using matrix input to plot
plot1 = plot(X2,YMatrix2,'LineWidth',2);
set(plot1(1),'DisplayName','Motor Shaft', 'Color', 'k');
set(plot1(2),'DisplayName','Load Shaft', 'Color', 'b');

% Create ylabel
ylabel('Speed (rad/s)');

% Comment/uncomment the following line to remove/
% preserve the Y-limits of the axes
ylim(axes2,[-100 250]);

% Set the remaining axes properties
set(axes2,'YColor',[0 0.447 0.741]);

% Activate the right side of the axes
yyaxis(axes2,'right');
% Create plot
plot(X2,Y2,'DisplayName','Clutch Pressure','LineWidth',2, 'Color', 'r');

% Create ylabel
ylabel('Pressure (Pa)');

% Comment/uncomment the following line to remove/
% preserve the Y-limits of the axes
ylim(axes2,[0 2000000]);

% Set the remaining axes properties
set(axes2,'YColor',[0.85 0.325 0.098]);

% Create title
title('Time-Faulted Speeds and Clutch Pressure');

% Create xlabel
xlabel('Time (s)');

% Uncomment the following line to
% preserve the X-limits of the axes
% xlim(axes1,[0 0.2);

% Set the remaining axes properties
box(axes2,'on');
grid(axes2,'on');
set(axes2,'LineStyleOrderIndex',2);

Warning: At time 0.060000, one or more assertions are triggered.
A fault event has occurred The assertion comes from:
Block path: sdl_flexible_shaft/Faultable Damper
Assert location: (location information is protected)

14 Drivetrain Disturbances

14-18

At simulation time t = 0.06 s, the time specified for the fault, a warning is reported.
The damping coefficient drops and slows the speed of both shafts.

6 Enable a shock-based fault and specify a response that includes a change in the
damping coefficient and the generation of a MATLAB warning. Then, simulate the
model and plot the new results. Use these values for the damper Fault parameters:

• Enable faults — Yes
• Faulted damping coefficient — 150
• Enable temporal fault trigger — Disabled
• Enable behavioral fault trigger — Enabled
• Maximum permissible acceleration — 50

 Model and Detect Drivetrain Faults

14-19

• Maximum number of shocks — 2
• Reporting when fault occurs — Warning

Script for Configuring the Rotational Damper Block Using a Timed Fault
%% Paramaterize a Shock Fault
set_param(faultableDamperPath,...
 'enable_faults', enabled,... % Enable faults
 'b_fault', overDamp,... % Faulted damping coefficient
 'temporal_fault', disabled,... % Disable temporal fault trigger
 'fault_time', faultTime,.... % Simulation time for fault event
 'shock_fault', enabled,... % Enable behavioral fault trigger
 'acceleration_limit', aMaxHigh,... % Maximum permissible acceleration
 'shock_limit', shockNMaxLow ,... % Maximum number of shocks
 'report_fault', warning) % Reporting when fault occurs

7 Simulate the model and plot the results.

Script for Generating and Plotting Simulation Results
%% Simulate
sim(model)

%% Get Simulation Results
simlog03 = simlog_sdl_flexible_shaft;
simlog_t03 = simlog03.Clutch.P.series.time;
simlog_pClutch03 = simlog03.Clutch.P.series.values('Pa');
simlog_wMotor03 = simlog03.Shaft_Motor.F.w.series.values('rad/s');
simlog_wLoad03 = simlog03.Shaft_Load.F.w.series.values('rad/s');

%% Plot Results
X3 = simlog_t03;
YMatrix3 = [simlog_wMotor03 simlog_wLoad03];
Y3 = simlog_pClutch03;

% Create axes
axes3 = axes('Parent',figure1,...
 'Position',[0.125 0.08 0.775 0.216]);
hold(axes3,'on');

% Activate the left side of the axes
yyaxis(axes3,'left');

% Create multiple lines using matrix input to plot
plot1 = plot(X3,YMatrix3,'LineWidth',2);
set(plot1(1),'DisplayName','Motor Shaft', 'Color', 'k');
set(plot1(2),'DisplayName','Load Shaft', 'Color', 'b');

% Create ylabel
ylabel('Speed (rad/s)');

% Comment/uncomment the following line to
% remove/preserve the Y-limits of the axes
ylim(axes3,[-100 250]);

% Set the remaining axes properties
set(axes3,'YColor',[0 0.447 0.741]);

% Activate the right side of the axes
yyaxis(axes3,'right');

14 Drivetrain Disturbances

14-20

% Create plot
plot(X3,Y3,'DisplayName','Clutch Pressure','LineWidth',2, 'Color', 'r');

% Create ylabel
ylabel('Pressure (Pa)');

% Comment/uncomment the following line to
% remove/preserve the Y-limits of the axes
ylim(axes3,[0 2000000]);

% Set the remaining axes properties
set(axes3,'YColor',[0.85 0.325 0.098]);

% Create title
title('Shock-Faulted Shaft Speeds and Clutch Pressure');

% Create xlabel
xlabel('Time (s)');

% Uncomment the following line to
% preserve the X-limits of the axes
% xlim(axes1,[0 0.2);

% Set the remaining axes properties
box(axes3,'on');
grid(axes3,'on');
set(axes3,'LineStyleOrderIndex',2);

Warning: At time 0.026048, one or more assertions are triggered.
A fault event has occurred The assertion comes from:
Block path: sdl_flexible_shaft/Faultable Damper
Assert location: (location information is protected)

 Model and Detect Drivetrain Faults

14-21

14 Drivetrain Disturbances

14-22

At simulation time t = 0.026 s, the maximum number of shocks for the specified
acceleration is reached. A warning is reported and the damping coefficient increases
and slows the speed of both shafts.

Rotational Damper | Translational Damper

 Model and Detect Drivetrain Faults

14-23

Modeling Driveline Environments

15

Model a Road Profile with Varying Elevation and Friction
This example shows how to vary road conditions throughout a simulation of a 4-wheel
drive vehicle test-bed. The model is a version of the sdl_vehicle_4wd_testbed that is
updated to include Road Profile blocks for both the front and rear tires. As the vehicle
travels, the axle parameters and the position of the center of gravity (CG) determine the
position of the front and rear axles. The Road Profile blocks use the axle positions to
determine vehicle angle and tire friction coefficients based on parameters that you
specify.

Updates to the Original Model
The original model determines the magic formula coefficients based on the position of the
vehicle relative to its position at the simulation start. The figures show the original and
the updated models.

15 Modeling Driveline Environments

15-2

The new model includes Road Profile blocks for both the right- and left-side tires. To open
the model, at the MATLAB command prompt, enter

open_system('sdl_vehicle_road_4wd_testbed')

 Model a Road Profile with Varying Elevation and Friction

15-3

In both models, the front, rear, and center differentials are represented by variant
subsystems.

15 Modeling Driveline Environments

15-4

The front and rear tire subsystems contain Tire (Magic Formula) blocks, while the
Vehicle Body subsystem is a mask for a Vehicle Body block.

 Model a Road Profile with Varying Elevation and Friction

15-5

Updates that allow the model to determine road conditions using the Road Profile blocks
are:

1 Replacement of the Road subsystem with the Wheel Position subsystem. The road
subsystem contains three levels of subsystems that the model uses to determine the
Magic Formula coefficients for the tires during simulation.

15 Modeling Driveline Environments

15-6

 Model a Road Profile with Varying Elevation and Friction

15-7

The addition of the Road Profile blocks allows for the replacement of the Wheel
Position system with the much simpler Wheel Position subsystem. The new
subsystem demuxes the wheel position signals.

2 Parameterization for the added Road Profile blocks for the right and left tires:

Main

• Horizontal distance from CG to front axle — x_f
• Horizontal distance from CG to rear axle — x_r
• Horizontal distance for vertical profile — x_height_vector
• Vertical profile — height_vector

Friction

• Friction output — Physical signal Magic Formula coefficients
• Horizontal distance for friction profile — x_friction_vector
• Magic Formula coefficients for front axle — MF_M_matrix
• Magic Formula coefficients for front axle — MR_M_matrix

Position Variable

• Override — select
• Beginning Value — x_0

3 Vehicle Body block Main parameter updates:

• Horizontal distance from CG to front axle — x_f

15 Modeling Driveline Environments

15-8

• Horizontal distance from CG to rear axle — x_r
4 Variable definitions for the model:

x_f=1.4;
x_r=1.6;
x_height_vector=[-10, 0, 10];
height_vector=[0, 0, 0.25];
x_friction_vector = [-10, 5, 10, 15];
MF_M_matrix = [10 1.9 1 0.97;...
 4 2 0.1 1;...
 12 2.3 0.82 1;...
 10 1.9 1 0.97];
MR_M_matrix = [10 1.9 1 0.97;...
 12 2.3 0.82 1;...
 12 2.3 0.82 1;...
 10 1.9 1 0.97];
x_0 = 0;

5 Additional environmental updates:

• The left-tire Road Profile block introduces a variable road grade. The Gain block
converts the grade variable, beta from radians to degrees.

• A headwind is included by using a nonzero value for the Constant block.
6 Signal block updates:

• Outports and Inports blocks are replaced with Connection Port blocks.
• Goto and From blocks are used to relay signals to the Scope.

7 Data visualization and logging updates:

• The Scope block is updated to show tire positions, Magic Formula Coefficients,
headwind, and road elevation.

• The simlog name is updated to match the name of the updated model.
• The differential test and plot generation code is updated to use the new simlog

name.

Run the Simulation
1 To run the simulation and generate a plot of the results, click Plot speeds.

 Model a Road Profile with Varying Elevation and Friction

15-9

The front tires experience slip in the middle of the simulation due to the slippery
conditions related to the [4 2 0.1 1] Magic Coefficients that the simulation uses
when the positions of the front tires are 5 to 10 meters from the original positions.

2 To see how the road incline, headwind, tire position, and vehicle speed and position
relate to each other and to the Magic Coefficients, open the Scope block.

15 Modeling Driveline Environments

15-10

The vehicle velocity increases slightly as the road grade decreases.
3 To test the front and rear differentials in both the Open and Torsen variants, click

Test front, rear differential.

 Model a Road Profile with Varying Elevation and Friction

15-11

The Torsen differential configuration results in higher velocity throughout the
simulation.

4 To test all variants of the center differential, click Test center differential.

15 Modeling Driveline Environments

15-12

The open and viscous differential configurations result in lower, more variable
velocity when the grade changes during the simulation.

See Also
Road Profile | Tire (Friction Parameterized) | Tire (Magic Formula) | Tire-Road Interaction
(Magic Formula) | Vehicle Body

 See Also

15-13

Analyzing Driveline Models and
Simulations

These sections explore some of the more complex issues in driveline modeling, and some
powerful techniques that can extend your driveline simulations.

• “Driveline Simulation Performance” on page 16-2
• “Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models”

on page 16-7
• “Driveline Degrees of Freedom” on page 16-38
• “Driveline States — Effect of Clutches” on page 16-52
• “How Simscape Driveline Simulates a Drivetrain System” on page 16-55
• “Model Thermal Losses in Driveline Components” on page 16-56
• “Simscape Driveline Limitations” on page 16-64

For information about the nature of Simscape models, states, and simulation, see the
documentation for “Simulink” and “Simscape”.

16

Driveline Simulation Performance
In this section...
“About Simulation Performance” on page 16-2
“Adjust Model Fidelity” on page 16-2
“Improve Simulation Performance by Using the Partitioning Solver” on page 16-3
“Optimize Simulation of Stiff Drivelines” on page 16-3
“Optimize Simulation of Clutches” on page 16-4

About Simulation Performance
Driveline simulation involves the tradeoff between accuracy and speed inherent in all
numerical simulation. Accuracy bundles two distinct issues, the accuracy or fidelity of the
model, versus of the accuracy of the simulation methods. This section describes the
inherent complexity of driveline models, as distinct from general simulation issues.

About solvers and simulation methods, see “Setting Up Solvers for Physical Models”
(Simscape) and “Making Optimal Solver Choices for Physical Simulation” (Simscape).

Adjust Model Fidelity
Improving the fidelity of driveline models involves making blocks that are more accurate
representations of the actual physical components. For example, you can make the
internal dynamics of the components represented by blocks more or less accurate and
realistic by:

• Turning physical effects on and off, such as nonideal gear meshing losses (gear
efficiency)

• Including or omitting compliance (including damped spring reactions), hard stops, and
time lags

• Including or omitting Coulomb friction from clutches and clutch-like elements
• Steepening or softening sharp gradients in physical thresholds, such as velocity

thresholds in clutches and nonideal gears

Modeling these physical effects requires additional dynamics and algebraic constraints,
generates computationally more intensive simulations, and can reduce simulation speed,
often considerably.

16 Analyzing Driveline Models and Simulations

16-2

Model Fidelity in Ordinary Desktop Simulation

• Very small velocity threshold values and short time lags can degrade numerical
convergence or simulation performance. Consider whether you can make these values
larger in your simulation.

• If your model includes gears with efficiency loss, select adaptive zero-crossing in the
Model Configuration Parameters menu.

Model Fidelity in Fixed-Step, Real-Time, and Hardware-in-the-Loop Simulation

Apart from clutches, MathWorks® does not recommend including fidelity enhancements in
fixed-step/fixed cost, real-time, or hardware-in-the-loop (HIL) simulation.

To model compliance or efficiencies, consider reducing the number of such elements by:

• Deleting unnecessary lossy elements
• Combining lossy elements into as few elements as possible

If you simulate with a fixed-step solver, avoid:

• Very small velocity thresholds.
• Time lags that are short compared to the fixed time step.

Improve Simulation Performance by Using the Partitioning
Solver
The Partitioning solver is a Simscape fixed-step local solver that improves performance
for certain models. For more information about the Partitioning solver, including
limitations for the types of models that it can solve, see “Increase Simulation Speed Using
the Partitioning Solver” (Simscape). For an example that shows how to simulate a
Simscape Driveline model using the Partitioning solver, see “Resolve Partitioning Solver
Simulation Issues for Simscape Driveline Models” on page 16-7.

Optimize Simulation of Stiff Drivelines
When modeling a driveline, consider not modeling all the compliances, depending on the
purpose of your model. If there are specific compliances that are more dominant than
others, then try modeling only the dominant compliances.

The coupling of drivelines to external loads — for an automobile, the wheel-tire-road load
— is often stiff. Driving and road conditions typically change over seconds or tens of

 Driveline Simulation Performance

16-3

seconds. However, the internal changes of the drive system of an automobile can change
over fractions of a second, especially if clutch changes and braking are at work. In
addition, clutch locking and unlocking events create dynamic discontinuities.

For example, a tire is “stiff” in responding slowly to imposed forces and experiencing slip.
A tire also has a broad range of frequency responses. Consider modeling tire compliance
only when you model the automobile accelerating from rest.

Optimize Simulation of Clutches
Clutch locking and unlocking events generate discontinuous changes in driveline
dynamics and can cause major inaccuracies, particularly if you are simulating with a large
variable-step solver tolerance or a large fixed time step.

• Clutch discontinuities change the number and nature of the degrees of freedom of the
driveline during the simulation.

• Because clutch discontinuities are idealized events, they cause the driveline torques to
change abruptly, as the clutch switches abruptly between static and kinetic friction.

Smoothing and Offsetting Clutch Control Signals

You exert dynamic control on the locking and unlocking of clutches through their input
pressure or other locking signals.

The simplest way to force a locking is to change a clutch pressure abruptly from zero to
some predetermined value. You can then force an unlocking by abruptly changing the
clutch pressure back to zero. Such abrupt clutch pressure changes are not realistic. The
best solution is to model full clutch actuation. However, you can use simplified models to
reduce model complexity.

You can improve your clutch modeling and make it more realistic by ensuring that the
clutch pressure signals rise and fall smoothly, not suddenly. The Simulink Sources library
provides many ways to create such signals. You can also reshape existing signals using
blocks such as State-Space and Transfer Fcn.

These example models illustrate smoothed clutch pressure signals:

• sdl_clutch_custom ramps up and down the input clutch pressure.
• sdl_car uses Transfer Fcn blocks to reshape and smooth sharp clutch pressure

signals.

16 Analyzing Driveline Models and Simulations

16-4

For more information about smoothing clutch signals, see “Model Realistic Clutch
Pressure Signals” on page 12-8.

Adjusting Clutch Parameters

You can adjust internal parameters within each clutch block to control when and how the
clutch locks and unlocks.
Changing Pressure or Force Threshold

The locking signal coming into a clutch is physical, with units of force or pressure. With
some clutches, you can specify a force or pressure threshold Fth or Pth. This threshold
imposes a cutoff on the clutch pressure such that the effective controlling pressure is P –
Pth rather than P. If P < Pth, no pressure at all is applied. (Normal force between clutch
surfaces can substitute for pressure.) Raising the pressure or force threshold of a clutch
that has an adjustable threshold makes it harder for the clutch to engage.

Tip If a clutch in your simulation engages too easily, consider raising its pressure or force
threshold. If the clutch has difficulty engaging, consider lowering this threshold.

Changing Velocity Tolerance

Most clutch blocks have a velocity tolerance parameter ωTol that controls when the clutch
locks or unlocks.

• A clutch can lock only if the relative shaft velocity ω lies in the range –ωTol < ω <
+ωTol.

• A clutch unlocks if the torque across the clutch exceeds the static friction limit, which
depends in turn on the normal force across the clutch.

You specify ωTol values through each clutch block.

Tip If a clutch switches between locked and unlocked too easily during simulation,
consider increasing its velocity tolerance.

Adjusting Solvers for Clutch Discontinuities

If you use a solver tolerance or step size that is too large, clutch discontinuities can cause
major inaccuracies.

 Driveline Simulation Performance

16-5

• If the variable-step tolerances are too large, the solver finds it difficult or impossible to
track the dynamic change associated with the change of friction torques acting on the
driveline accurately.

• If the fixed step size is too large, the solver cannot accurately resolve abrupt changes
such as clutch locking and unlocking events. A fixed-step solver cannot adaptively
reduce its step size to compensate.

Tip If you encounter convergence failures or abrupt driveline state (velocity) changes at
or around the instant of clutch state changes, consider reducing the solver tolerances (for
a variable-step solver) or the step size (for a fixed-step solver). Set the variable-step
solver tolerance or the fixed-step solver step size to the smallest value possible that
produces an acceptable simulation speed (not too slow).

Adjustment Solver Type and
Setting

Effect on
Accuracy

Effect on
Speed

Effect on Clutch
Simulation

Reduce Variable-step:
tolerances

Increases Reduces Improves resolution and
simulation of abrupt locking
and unlockingFixed-step: step

size
Increase Variable-step:

tolerances
Reduces Increases Degrades resolution and

simulation of abrupt locking
and unlockingFixed-step: step

size

16 Analyzing Driveline Models and Simulations

16-6

Resolve Partitioning Solver Simulation Issues for
Simscape Driveline Models

In this section...
“Resolving Issues for Blocks with Stiffness or Friction” on page 16-7
“Using the Partitioning Solver” on page 16-7
“Resolve Initial Condition Errors and Warnings” on page 16-8
“Reduce Chatter Due to Friction” on page 16-17
“Resolve Chatter Due to Stiffness” on page 16-8

The Partitioning solver is a Simscape fixed-step, local solver that improves performance
for certain models. However, when using the Partitioning solver, some Simscape Driveline
models generate warnings, stop and generate errors, fail to initialize, or yield signal
chatter due to numerical difficulties. These examples show how to eliminate errors,
mitigate warnings, and reduce chatter by resolving numerical difficulties.

Resolving Issues for Blocks with Stiffness or Friction
Numerical difficulties that prevent models from simulating to completion, yield warnings,
or introduce chatter are typically related to blocks that have high stiffness or friction.
Simscape Driveline blocks with high stiffness or friction include clutches, belt pulleys,
tires, and flexible shafts.

To resolve numerical difficulties in models that contain these blocks, use one or more of
the methods:

• Adjust the solver settings.
• Remove high-priority variable redundancies.
• Unlock clutch initial conditions.
• Loosen friction-related tolerances.
• Eliminate high-stiffness blocks.
• Eliminate degrees of freedom.

Using the Partitioning Solver
When simulating models using the Partitioning solver:

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-7

1 Simulate the model by using a global variable-step solver to capture baseline results
that agree with your mathematical model or empirical data.

2 Configure the local solver for a Partitioning solver simulation.
3 Run the Partitioning solver simulation. If the simulation:

• Runs to completion — Compare the Partitioning solver simulation results to the
baseline results. If the results do not agree, adjust the solver settings or model
components and simulate again. For example, decrease the step size or simplify
model dynamics. For more information, see “Reduce Numerical Stiffness”
(Simscape), “Choose Step Size and Number of Iterations” (Simscape), and
“Reduce Fast Dynamics” (Simscape).

Repeat until the simulation returns results that agree with the baseline results.
• Fails to simulate to completion due to numerical issues — Resolve the issues by

applying one or more of the methods listed in “Resolving Issues for Blocks with
Stiffness or Friction” on page 16-7. Rerun the simulation. Repeat until the
simulation runs to completion, then compare the results to the baseline results. If
the results do not agree, adjust the solver settings or model components and
rerun the simulation. Repeat until the Partitioning solver simulation returns
results that agree with the baseline results.

Resolve Initial Condition Errors and Warnings
This example shows how to resolve numerical difficulties that generate initial condition
errors and warnings. When an initial condition issue prevents a simulation from initiating
or running to completion, MATLAB stops the simulation and generates an error. When a
simulation is unable to satisfy high-priority targets, the simulation continues to run, but
MATLAB generates a warning.

1 Open the model. At the MATLAB command prompt, enter:

%% Open the Model
model = 'sdl_transmission_helicopter_base';
open_system(model)

16 Analyzing Driveline Models and Simulations

16-8

The model window indicates that the Simulink global solver is a variable-step solver.
2 To examine the Simscape local solver configuration, open the Solver Configuration

block settings.

See Code

%% Define the Solver Configuration Block and Path
solvConfig = 'Solver Configuration';
solvConfigPath = [model,'/',solvConfig];

%% Open the Solver Configuration Block Settings
open_system(solvConfigPath)

The model is configured to simulate using the Simulink global solver because the Use
local solver check box is cleared.

3 Simulate the model and then, to examine the baseline results from the variable-step
simulation, open the Scope block.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-9

See Code

%% Simulate the Model
sim(model)

%% Examine the Baseline Results
% Define the Scope Block and Path
scope = 'Rotor Lift (lb)';
scopePath = [model,'/',scope];

% Open the Scope Block to View the Results
open_system(scopePath)

4 Configure the model for a Partitioning solver simulation. In the Solver Configuration
block settings, select the Use local solver check box.

See Code

%% Configure the Partioning Solver
% Open the Solver Configuration Block Settings
open_system(solvConfigPath)

% Configure the Solver Configuration Block
set_param(solvConfigPath,...
 'UseLocalSolver','on',...
 'DoFixedCost','on')

16 Analyzing Driveline Models and Simulations

16-10

%% To Confirm the Configuration Change by Refreshing
% the Solver Configuration Block Settings,
% Uncomment the Next Two Lines of Code (Optional)
% close_system(solvConfigPath)
% open_system(solvConfigPath)

When you select the Use local solver check box, related parameters are enabled. By
default, the parameters in the Solver Configuration block are set to::

1 Solver type — Partitioning
2 Sample time — 0.05
3 Partition method — Robust simulation
4 Partition storage method — Exhaustive
5 Use fixed-cost runtime consistency iterations — Selected
6 Nonlinear iterations — 3

5 Simulate the model.

See Code

%% Simulate the Model
sim(model)

The simulation generates two warnings and one error. The error prevents compilation
because it stops the simulation.
Warning: Initial conditions for eliminated differential variables not
supported by partitioning solver. The following states may deviate from
requested initial conditions:
 ['sdl_transmission_helicopter_base/Inertia Main Rotor'] Inertia_Main_Rotor.w
 ['sdl_transmission_helicopter_base/Inertia Tail Rotor'] Inertia_Tail_Rotor.w

Warning: Simscape succeeded in finding consistent states with which to start the simulation,
but the states found may deviate from requested initial conditions.

Error: ['sdl_transmission_helicopter_base/Solver Configuration']:
At time 0.050000, one or more assertions are triggered.
See causes for specific information.

 Caused by:
 Argument of sqrt must be nonnegative. The assertion comes from:
 Block path: sdl_transmission_helicopter_base/Lift and Drag Main Rotor/L^.5

 Assert location:
 In between line: 48, column: 19 and line: 48, column: 20 in file:
 Dir:\Program\Files\MATLAB\R20XXx\toolbox\physmod\simscape\library\m\
 physical_signal_legacy\+foundation\+physical_signal\+functions\math_function.ssc

6 The error message indicates that the solver returned a negative value for a square-
root computation. If a variable-step simulation runs to completion, but a fixed-step

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-11

simulation generates this type of error for the same model, typically, the local solver
sample time is too large or the local solver number of nonlinear iterations is too
small. Increase the number of nonlinear iterations for the local solver. In the Solver
Configuration block settings, set Nonlinear iterations to 9. Then simulate the model
and view the results in the Scope block.

See Code

%% Increase the Number of Nonlinear Iterations for the Local Solver
% Increase the Number of Nonlinear Iterations
set_param(solvConfigPath,'MaxNonlinIter','9')

%% To Confirm the Configuration Change by Refreshing
% the Solver Configuration Block Settings,
% Uncomment the Next Two Lines of Code (Optional)
% close_system(solvConfigPath)
% open_system(solvConfigPath)

%% Simulate the Model
sim(model)

% Open the Scope Block to View the Results
open_system(scopePath)

Warning: Initial conditions for eliminated differential variables not
supported by partitioning solver. The following states may deviate
from requested initial conditions:
 ['sdl_transmission_helicopter_base/Inertia Main Rotor']
 Inertia_Main_Rotor.w
 ['sdl_transmission_helicopter_base/Inertia Tail Rotor']
 Inertia_Tail_Rotor.w

Warning: Simscape succeeded in finding consistent states with which to
start the simulation, but the states found may deviate from requested
initial conditions.

16 Analyzing Driveline Models and Simulations

16-12

The simulation runs to completion, but it still generates two warnings. The results
agree with the baseline results in terms of the significant characteristics for the
model (such as the slopes, magnitudes, and inflection points).

7 Both warnings are caused by initial condition issues. Investigate the warnings by
examining the variables in the model. To open the Variable Viewer, on the Apps tab,
in the Physical Modeling category, click Simscape Variable Viewer. To filter for
variables that have targets that the simulation is unable to satisfy, click the arrow to
the right of the Status column header, and in the drop-down list, clear the OK check
box.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-13

There are several variables that have High priority targets that the simulation is
unable to satisfy.

The two inertia blocks that are mentioned in the first warning are among the blocks
that have problematic high-priority targets. The Partitioning solver has converted
these variables to nondifferential variables, which are algebraically related to
remaining differential variables. Initial conditions for nondifferential variables are not
supported by the Partitioning solver.

The Inertia Tail Rotor initial rotational velocity, -400 (rpm), is algebraically
constrained to match the rotational velocity specified in the Flexible Shaft block.
Likewise, the Inertia Main Rotor initial rotational velocity of -80 (rpm) is algebraically
constrained to match the rotational velocity of the R node of Planetary Main Rotor
block.

8 Eliminate the first warning by removing the priority for the problematic initial
condition targets. Open both the Inertia Main Rotor block and the Inertia Tail Rotor
block, and, in the Variables settings, set the priority for the Rotational velocity
variable to None. Then simulate the model, examine the variables, and view the
results.

See Code

%% Remove the Target Priorities

% Define the Inertia Main Rotor Block and Path
inertiaMainRotor = 'Inertia Main Rotor';
inertiaMainRotorPath = [model,'/',inertiaMainRotor];

% Define the Inertia Tail Rotor Block and Path
inertiaTailRotor = 'Inertia Tail Rotor';
inertiaTailRotorPath = [model,'/',inertiaTailRotor];

% Eliminate the High Priorties
set_param(inertiaMainRotorPath,'w_priority','None')
set_param(inertiaTailRotorPath,'w_priority','None')

% Simulate the Model
sim(model)

% Open the Scope Block to View the Results
open_system(scopePath)

16 Analyzing Driveline Models and Simulations

16-14

Warning: Simscape succeeded in finding consistent states with which to
start the simulation, but the states found may deviate from requested
initial conditions.

The inertia initial condition warning is not generated and the Variable Viewer no
longer shows the velocity for the inertia among the failed targets. The results agree
with the baseline results in terms of the significant characteristics for the model.

9 Examine the Variable Viewer data. The remaining warning is issued because there is
a large difference between the Target and Start values for several high priority
targets. To reduce the difference, decrease the sample time for the local solver. In the
Solver Configuration block settings, set Sample time to 0.01. Then simulate the
model and view the results.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-15

See Code

%% Increase the Local Solver Sample Time
set_param(solvConfigPath,'LocalSolverSampleTime','0.01')

% Simulate the Model
sim(model)

% Open the Scope Block to View the Results
open_system(scopePath)

Warning: Simscape succeeded in finding consistent states with which to
start the simulation, but the states found may deviate from requested
initial conditions.

16 Analyzing Driveline Models and Simulations

16-16

There is still a warning for several high-priority targets, but the difference between
the Target and Start values is smaller. The results match the baseline results in
terms of the significant characteristics for the model and, due to the decrease in
sample time, the Main signal is smoother.

Reduce Chatter Due to Friction
This example shows how to reduce chatter, a type of signal noise. Chatter can occur when
you use the Partitioning solver to simulate a model that includes a block that models
friction. Certain Simscape Driveline brake, clutch, drive, gear, and tire blocks can model
friction.

1 Open the model. At the MATLAB command prompt, enter:

%% Open the Model
model = 'sdl_capstan';
open_system(model)

% Expand the Model Window to Accomodate the Property Inspector
modelLocation = get_param(model,'location');
modelLocationAdjustment = [0 0 400 100];
modelLocationAdjusted = modelLocation + modelLocationAdjustment;
set_param(model,'location',modelLocationAdjusted)

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-17

The model is configured for variable-step simulation.

The capstan is represented by a Belt Pulley block, a drive block that models friction.
2 Enable Simscape local data logging for the model and for the Capstan block.

a Open the model Configuration Parameters. On the Modeling tab, click Model
Settings > Model Settings.

b In the left pane, select Simscape.
c Set Log simulation data to Use Local Settings.
d Select the Record data in Simulation Data Inspector check box.
e Select the Open viewer after simulation check box.
f To apply the changes to the Configuration Parameters, click OK.
g Click the Capstan block.
h Open the Property Inspector. On the Modeling tab, click the arrow on the right

side of the Design section. In the Data Management category, select Property
Inspector.

i In the Logging settings, select the Log simulation data check box.

See Code

%% Configure the Capstan Block for Data Logging

%% To open the Model Configuration Parameters
% Uncomment the Next Two Lines of Code (Optional)
% modelConfigObj = getActiveConfigSet(model);
% openDialog(modelConfigObj, 'Simscape')

%% Configure the Model for Local Data Logging

16 Analyzing Driveline Models and Simulations

16-18

set_param(model,...
 'SimscapeLogType','local',...
 'SimscapeLogToSDI', 'on',...
 'SimscapeLogOpenViewer', 'on')

%% To Confirm the Configuration Change by Refreshing
% the the Model Configuration Parameters,
% Uncomment the Next Four Lines of Code (Optional)
% closeDialog(modelConfigObj)
% openDialog(modelConfigObj, 'Simscape')
% pause(5)
% closeDialog(modelConfigObj)

%% Define the Capstan Block and Path
capstan = 'Capstan';
capstanPath = [model,'/',capstan];

%% Enable Data Logging for the Capstan block
set_param(capstanPath, 'LogSimulationData', 'on')

%% To Confirm the Configuration Change in the Property Inspector (Optional):
% 1. Uncomment the next line of code
% set_param(capstanPath,'Selected','on');
%
% 2. Manually, open the Property Inspector:
% 2.1. On the Simulink Modeling tab,
% click the arrow on the right side of the Design section.
% 2.2. In the Data Management category, select Property Inspector.
% 3. In the Propety Inspector, expand the Logging settings.

3 Simulate the model and then, to examine the results for the Capstan block B-node
force, in the Simulation Data Inspector:

a Expand the Capstan node.
b Select the fB check box.

See Code
%% Simulate the Model
sim(model)

%% Select and Format the Data for the Simulation Data Inspector
runIDs = Simulink.sdi.getAllRunIDs;
baselineRunID = runIDs(end);
baselineRun = Simulink.sdi.getRun(baselineRunID);
baselinefB = baselineRun.getSignalByIndex(5);
baselinefB.Checked = true;
baselineRunTireLFSlip.LineColor = [0.7176 0.2745 1];
% baselinefB.LineDashed = '-.';

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-19

The results show that the load force causes slip when it exceeds the capstan force
limit.

4 Close the Simulation Data Inspector.

See Code
%% Close the Simulation Data Inspector
Simulink.sdi.close

5 Configure the model for a Partitioning solver simulation. Click the Solver
Configuration and in the Solver Configuration block settings:

a Select the Use local solver check box.
b Set Solver type to Partitioning.
c Set Partition method to Robust simulation.
d Set Solver type to Partitioning.
e Set Partition storage method to Exhaustive.

See Code
% Configure the Local Solver

%% Define the Solver Configuration Block and Path
solvConfig = 'Solver Configuration';
solvConfigPath = [model,'/',solvConfig];

16 Analyzing Driveline Models and Simulations

16-20

%% Configure the Solver Configuration Block
set_param(solvConfigPath,...
 'UseLocalSolver','on',...
 'LocalSolverChoice','NE_PARTITIONING_ADVANCER',...
 'PartitionMethod','ROBUST',...
 'PartitionStorageMethod','EXHAUSTIVE',...
 'DoFixedCost','on')

%% To Confirm the Configuration Change in the Property Inspector (Optional):
% 1. Uncomment the next line of code
% set_param(solvConfigPath,'Selected','on');
%
% 2. If the Property Inspector is closed, manually, open it:
% 2.1. On the Simulink Modeling tab,
% click the arrow on the right side of the Design section.
% 2.2. In the Data Management category, select Property Inspector.
% 3. In the Propety Inspector, expand the Logging settings.

6 Simulate the model and examine the results in the Simulation Data Inspector.

See Code

%% Simulate the model
sim(model)

The Capstan block B-node force shows significant chatter during the Partitioning
solver simulation. Refer to the documentation for the Belt Pulley block for sources of
stiffness or discontinuities.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-21

See Code

%% Open the documentation for the Belt Pulley block
web(fullfile(docroot, 'physmod/sdl/ref/beltpulley.html'))

According to the documentation, Vrel is the relative velocity between the belt and
pulley periphery. The idealization of the discontinuity at Vrel = 0 is both difficult for
the solver to resolve and not physically accurate. To alleviate this issue, the friction
coefficient is assumed to change its value as a function of the relative velocity such
that

μ = − f ∗ tanh 4 ∗ Vrel Vthr ,

where:

• μ is the instantaneous value of the friction coefficient.
• f is the steady-state value of the friction coefficient.
• Vthr is the friction velocity threshold.

Therefore, for small values of Vthr, the friction force stiffness near Vrel increases
significantly.

7 To resolve this issue, increase the Vthr value in the Capstan block settings. In the
Contact settings, increase Velocity threshold from 0.001 to 0.1.

See Code

%% Increase the Velocity Threshold
set_param(capstanPath,'v_thr', '0.1')

%% To Confirm the Configuration Change in the Property Inspector (Optional):
% 1. Uncomment the next line of code
% set_param(capstanPath,'Selected','on');
%
% 2. If the Property Inspector is closed, manually, open it:
% 2.1. On the Simulink Modeling tab,
% click the arrow on the right side of the Design section.
% 2.2. In the Data Management category, select Property Inspector.
%
% 3. In the Propety Inspector, expand the Contact settings.
%
% 4. Uncomment the next line of code
% set_param(capstanPath,'Selected','off');

8 Simulate the model and examine the results in the Simulation Data Inspector.

16 Analyzing Driveline Models and Simulations

16-22

See Code
%% Simulate the Model
sim(model)

The Capstan block B-node force no longer shows significant chatter.
9 Compare the data from the variable-step simulation to the new data from the fixed-

step solver simulation.

a In the Simulation Data Inspector, select Compare.
b To configure the comparison, in the top, right pane:

i Click the arrow on the right side of the Baseline setting. At the bottom of
the list, click Signals and then select sdl_capstan.Capstan.fB (Run
1: sdl_capstan).

ii Click the arrow on the right side of the Compare to setting. At the bottom
of the list, click Signals and then select sdl_capstan.Capstan.fB (Run
3: sdl_capstan).

iii Click Compare.
c To change the Partitioning solver results line color, in the Properties pane, in

the Compare to column, click the colored Line, select a different color and
style, such as yellow and dash-dot, and then click Set.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-23

See Code
%% Select and Format Data for the Simulation Data Inspector Comparison
runIDs = Simulink.sdi.getAllRunIDs;
partSolverRun2ID = runIDs(end);
partSolverRun2 = Simulink.sdi.getRun(partSolverRun2ID);
partSolverRun2fB = partSolverRun2.getSignalByIndex(5);
% partSolverRun2fB.Checked = true;
partSolverRun2fB.LineColor = [0.9294 0.6941 .1255];
partSolverRun2fB.LineDashed = '-.';

% Compare Runs
compBaselinePartition2 = Simulink.sdi.compareRuns(baselineRunID,...
 partSolverRun2ID);

16 Analyzing Driveline Models and Simulations

16-24

The Capstan block B-node force no longer shows significant chatter. The Partitioning
solver and Variable-step solver simulation results agree for much of the simulation.
The difference in the results is the expected difference for a comparison of variable-
step and fixed-step solver results.

The figure shows a time-scaled view of the difference between the results of the variable-
step simulation and the results of the Partitioning solver fixed-step simulation.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-25

By decreasing the step size during a simulation, the variable-step solver is able to capture
fast dynamics that occur at simulation time, t = 3 s. The Partitioning solver steps over the
fast dynamics because the fixed-step size is too large. You could reduce or resolve the
difference by decreasing the step size for the Partitioning solver, but doing so increases
simulation duration time and can result in a real-time simulation overrun.

16 Analyzing Driveline Models and Simulations

16-26

The overshoot of the fixed step solver at simulation time t = 3.014 s is also a
characteristic of fixed-step solvers. Reducing the step size for the Partitioning solver can
minimize the overshoot but can also result in a real-time simulation overrun.

Resolve Chatter Due to Stiffness
This example also shows how to resolve numerical difficulties that yield chatter in
Simscape Driveline simulations that use the Partitioning solver. In this case, the chatter is
caused by stiffness. A stiff model is one that contains both fast and slow dynamics.

1 Open the model with block. At the MATLAB command prompt, enter:

%% Open the Model
model = 'sdl_vehicle_dual_clutch';
open_system(model)

The model is configured for a variable-step simulation that uses the global solver.
Data logging is enabled only for the signal that contains the gear state data.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-27

2 Configure the model for data logging. For this example, tire slip is the data of interest
and logging additional data increases the computational cost of simulation. Enable
data logging for tire slip and disable data logging for the gear state.

a In the Vehicle subsystem, the Tire LF Tire (Magic Formula) block represents the
left-front tire of the vehicle. The Tire LF S port, which transmits the tire slip
data, is a physical signal port. You can log physical signal data using Simulink
data logging. The destination for the signal is the Tire slip Scope block, which is
in the Scopes subsystem.

i Open the Scopes subsystem.
ii The tire slip data is in the signal that the FrontSlip From block transmits to

the Tire slip Scope block. Select the signal, and in the Simulink toolstrip, on
the Signal tab, click the arrow on the right side of the Monitor section. In
the Signal Monitoring category, click Log Signals.

See Code
%% Enable Tire Slip Data Logging
% Enable Logging for Front Left Tire Slip Signal

% Define Scope Subsystem and path
scopesSS = 'Scopes';
scopesSSPath = [model,'/',scopesSS];

%% Define Front Slip From Tag Signal
fromTireLFLogSlip1 = 'From8';
fromTireLFLogSlip1Path = [scopesSSPath,'/',fromTireLFLogSlip1];

%% Enable the Front Slip From Tag Signal for
% Simulink(TM) data logging and viewing with the Simulation Data Inspector

fromTireLFLogSlip1PortHandles = get_param(fromTireLFLogSlip1Path,...
 'PortHandles');
fromTireLFLogSlip1Outport = fromTireLFLogSlip1PortHandles.Outport;
set_param(fromTireLFLogSlip1Outport,'DataLogging','on')

b In the Transmission Controller subsystem, in the Shift state subsystem, the z3
Unit Delay block transmits the gear state.

i Open the Transmission Controller subsystem.
ii Open the Shift state subsystem.
iii The Gear state G subsystem transmits the gear state to a Unit Delay block,

which, in turn, transmits the data to the Gear state Outport block. The signal
that connects the Unit Delay block to the Gear state Outport block is marked
for data logging. Select the signal, and in the Simulink toolstrip, on the

16 Analyzing Driveline Models and Simulations

16-28

Signal tab, click the arrow on the right side of the Monitor section. In the
Signal Monitoring category, click Log Signals.

See Code
%% Disable Gear State Data Logging

% Define Transmission Controller Subsystem and Path
transCntrl = 'Transmission Controller';
transCntrlPath = [model,'/',transCntrl];

% Define Shift State Subsystem and path
shiftState = 'Shift state';
shiftStatePath = [transCntrlPath,'/',shiftState];

% Define Unit Delay block and path
unitDelay = 'z3';
unitDelayPath = [shiftStatePath,'/',unitDelay];

% Disable Unit Delay block signal logging
unitDelayPortHandles = get_param(unitDelayPath,'PortHandles');
unitDelayOutport = unitDelayPortHandles.Outport;
set_param(unitDelayOutport,'DataLogging','off')

3 Obtain and examine the baseline results. Simulate using the global variable-step
solver and review the results in the Simulation Data Inspector.

a Run the simulation. In the Simulink toolstrip, on the Simulation tab, in the
Simulate section, click Run.

See Code
%% Simulate the Model
sim(model)

b Open the Simulation Data Inspector. In the Simulink toolstrip, on the Simulation
tab, click the arrow on the right side of the Review Results section, and, in the
Signal Logging Results category, click Signal Logging Results.To inspect the
tire slip data, select the From8:1 check box.

See Code
%% Examine Baseline Results in the Simulation Data Inspector

% Define Baseline Run
runIDs = Simulink.sdi.getAllRunIDs;
baselineRunID = runIDs(end);
baselineRun = Simulink.sdi.getRun(baselineRunID);
baselineRunTireLFSlip = baselineRun.getSignalByIndex(1);

% Set Line Color
baselineRunTireLFSlip.LineColor = [0 0.4470 0.7410];

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-29

% Select Signal (From8:1) Check Box
baselineRunTireLFSlip.Checked = true;

%% Open Simulation Data Inspector
Simulink.sdi.view

4 Configure the local solver for fixed-step simulation using the Partitioning solver.

a In the model, open the Solver Configuration block settings.
b Select the Use local solver check box.

See Code

%% Define the Solver Configuration Block and Path
solvConfig = 'Solver Configuration';
solvConfigPath = [model,'/',solvConfig];

%% Configure the Solver Configuration Block
set_param(solvConfigPath,...
 'UseLocalSolver','on',...
 'DoFixedCost','on')

5 Simulate using the Partitioning solver.

See Code

%% Simulate the Model
sim(model)

16 Analyzing Driveline Models and Simulations

16-30

The simulation runs to completion, but generates two initial condition warnings.
Warning: Initial conditions for eliminated differential variables not supported
by partitioning solver. The following states may deviate from requested initial
conditions:
 ['sdl_vehicle_dual_clutch/Vehicle/Tire LR'] Vehicle.Tire_LR.tire_inertia.w
 o In sdl.tires.tire_magic
 ['sdl_vehicle_dual_clutch/Vehicle/Tire RF'] Vehicle.Tire_RF.tire_inertia.w
 o In sdl.tires.tire_magic
 ['sdl_vehicle_dual_clutch/Vehicle/Tire RR'] Vehicle.Tire_RR.tire_inertia.w
 o In sdl.tires.tire_magic

Warning: Simscape succeeded in finding consistent states with which to start
the simulation, but the states found may deviate from requested initial conditions.

6 Compare the baseline and Partitioning solver results in the Simulation Data
Inspector.

a Open the Simulation Data Inspector.
b In the top, left pane, select Compare.
c Configure the comparison. In the top, right pane:

i On the right side of the Baseline setting, click the down arrow and select
Run 1: sdl_vehicle_clutch.

ii On the right side of the Compare to setting, click the down arrow and select
Run 2: sdl_vehicle_clutch.

iii Click Compare.
d To change the Partitioning solver results line color, in the Properties pane, in

the Compare to column, click the colored Line, select a different color, such as
yellow, and then click Set.

See Code

%% Compare Partioning Solver Run 1 to Baseline Run
% Open Simulation Data Inspector
Simulink.sdi.view

% Define Partitioning Solver Run 1
runIDs = Simulink.sdi.getAllRunIDs;
pSolverRun1ID = runIDs(end);
pSolverRun1 = Simulink.sdi.getRun(pSolverRun1ID);
psolverRun1TireLFSlip = pSolverRun1.getSignalByIndex(1);

% Select From8:1 Check Box
% psolverRun1TireLFSlip.Checked = true;

% Set Line Color
psolverRun1TireLFSlip.LineColor = [0.9294 0.6941 .1255];

% Compare Runs

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-31

compBaselinePartition1 = Simulink.sdi.compareRuns(baselineRunID,...
 pSolverRun1ID);

The results from the Partitioning solver simulation contain significant chatter.
7 The signal chatter is due to stiffness that is related to inertia in the Tire (Magic

Formula) blocks. The inertia is also the cause of the first initial condition warning. To
resolve the signal chatter and the initial condition warning, simplify the tire
dynamics:

16 Analyzing Driveline Models and Simulations

16-32

a Open the Vehicle subsystem.
b Open the Tire LF block settings.
c In the Dynamics settings, set Inertia to No Inertia.
d Using the same process, omit the inertia for the Tire RF, Tire LR, and Tire RR

blocks.

See Code
%% Resolve Chatter and First Initial Conditions Warning
% Simplify Tire Dynamics by Removing Inertia

% Define Vehicle Subsystem and Paths
vehicle = 'Vehicle';
vehiclePath = [model,'/',vehicle];

%% Define Tire Blocks and Paths and Omit Tire Inertia
%% Define Tire LF
tireLF = 'Tire LF';
tireLFPath = [vehiclePath,'/',tireLF];

%% Set Tire LF Settings Dymamics > Inertia to "No inertia"
set_param(tireLFPath, 'model_inertia', '0')

%% Omit Inertia from Tire RF, LR, RR Blocks

% Tire RF
tireRF = 'Tire RF';
tireRFPath = [vehiclePath,'/',tireRF];
set_param(tireRFPath, 'model_inertia', '0')

% Tire LR
tireLR = 'Tire LR';
tireLRPath = [vehiclePath,'/',tireLR];
set_param(tireLRPath, 'model_inertia', '0')

% Tire RR
tireRR = 'Tire RR';
tireRRPath = [vehiclePath,'/',tireRR];
set_param(tireRRPath, 'model_inertia', '0')

8 The second initial condition warning is due to the locked state of the Dog Clutch 1
block at the beginning of the simulation. The Partitioning solver cannot solve the
dynamics for the initial torque that the locked clutch transmits between the ring and
the hub. To resolve the warning:

a Open the Dual Clutch Transmission subsystem.
b Open the Gears subsystem.
c Open the Dog Clutch 1 block settings. In the Initial Conditions settings, set

Clutch initial state to Unlocked.

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-33

See Code
%% Resolve Second Initial Condition Warning
% Set Dog Clutch 1 Block Clutch Initial State to Unlocked

% Define Dual Clutch Transmission Subsystem and Path
dualClutchTrans = 'Dual Clutch Transmission';
dualClutchTranPath = [model,'/',dualClutchTrans];

%% Define Gears Subsystem and Path
gearsSS = 'Gears';
gearsSSPath = [dualClutchTranPath,'/',gearsSS];

%% Define Dog Clutch 1 Block and Path
dogClutch1 = 'Dog Clutch 1';
dogClutch1Path = [gearsSSPath,'/',dogClutch1];

% Select Dog Clutch 1 Block
set_param(dogClutch1Path,'Selected','on')

%% Set Initial Conditions > Clutch inital state to "Unlocked"
set_param(dogClutch1Path, 'initial_state_engaged', '0')

9 Simulate and then examine and compare the results in the Simulation Data Inspector.

a Run the simulation.

See Code
%% Simulate the Model
sim(model)

The simulation runs to completion, and does not generate any initial condition
warnings.

b Open the Simulation Data Inspector and compare the results from the
Partitioning solver fixed-step simulation to the baseline results from the variable-
step simulation. To configure the comparison, in the top, right pane:

i On the right side of the Baseline setting, click the down arrow and select
Run 1: sdl_vehicle_clutch.

ii On the right side of the Compare to setting, click the down arrow and select
Run 3: sdl_vehicle_clutch.

iii Click Compare.

See Code
%% Open the the Simulation Data Inspector
Simulink.sdi.view

%% Define the baseline run and select the From tag check box

16 Analyzing Driveline Models and Simulations

16-34

runIDs = Simulink.sdi.getAllRunIDs;
pSolverRun2ID = runIDs(end);
pSolverRun2 = Simulink.sdi.getRun(pSolverRun1ID);
psolverRun2TireLFSlip = pSolverRun1.getSignalByIndex(1);
psolverRun2TireLFSlip.LineColor = [0.9294 0.6941 .1255];
psolverRun2TireLFSlip.Checked = true;

% Compare the results
compBaselinePartition2 = Simulink.sdi.compareRuns(baselineRunID,...
 pSolverRun2ID);

 Resolve Partitioning Solver Simulation Issues for Simscape Driveline Models

16-35

The results from the Partitioning solver simulation no longer contain significant
chatter and are much more similar to the baseline results.

16 Analyzing Driveline Models and Simulations

16-36

See Also
Solver Configuration

Related Examples
• “Increase Simulation Speed Using the Partitioning Solver” (Simscape)
• “Reduce Numerical Stiffness” (Simscape)
• “Reduce Fast Dynamics” (Simscape)
• “Reduce Zero Crossings” (Simscape)

More About
• “Variable Viewer” (Simscape)
• “Model Statistics Available when Using the Partitioning Solver” (Simscape)

 See Also

16-37

Driveline Degrees of Freedom
In this section...
“About Driveline Degrees of Freedom and Constraints” on page 16-38
“Identify Degrees of Freedom” on page 16-38
“Define Fundamental Degrees of Freedom” on page 16-39
“Define Connected Degrees of Freedom” on page 16-41
“Define Constrained Degrees of Freedom” on page 16-42
“Actuate, Sense, and Terminate Degrees of Freedom” on page 16-46
“Count Independent Degrees of Freedom” on page 16-47
“Count Degrees of Freedom in a Simple Driveline with a Clutch” on page 16-48

About Driveline Degrees of Freedom and Constraints
Identifying rotational degrees of freedom (DoFs) is important for building and analyzing a
driveline, particularly a complex system with many constraints and external actuations.
Simulink represents driveline DoFs and other Simscape system variables as states, among
all states of a model, including the pure Simulink states.

This section explains how to identify driveline DoFs, handle constraints, and extract the
true or independent DoFs from a complete driveline diagram.

• The basic elements of a driveline diagram:

• Connection lines
• Constraints, including branchings
• Dynamic elements

• Sensors and sources

• Actuating drivelines with motion sources and recording motions with motion
sensors

• Terminating DoFs

Identify Degrees of Freedom
In a Simscape Driveline model, mechanical motions can be rotational or translational:
motion around or along one axis. The simplest way to identify a driveline degree of

16 Analyzing Driveline Models and Simulations

16-38

freedom (DoF) is from an angular or linear velocity. A DoF represents a single, distinct
angular or linear velocity. Each DoF responds to the torques and forces acting on the
inertias and masses making up the driveline. Integrating Newton's equations of motion
determines the angular and linear motions. Mechanical DoFs are properties of rotating
inertias and translating masses. It is nonetheless consistent and simpler to identify a
single Simscape Driveline DoF as a driveline axis with its connected inertias and masses.

To identify and count DoFs in a driveline, look at a Simscape Driveline diagram starting
with its mechanical connection lines first, before considering its blocks. Driveline blocks
modify the DoFs represented by connection lines by:

• Generating torques and forces that act relatively between driveline axes
• Adding constraints between driveline axes
• Imposing externally actuated torques, forces, and motions

For the basic rules of connection lines and ports, see “Build a Drivetrain Model” on page
2-3.

Define Fundamental Degrees of Freedom
The basic unit of driveline motion is the DoF represented by an unbroken mechanical
connection line. Such lines represent idealized massless and perfectly rigid driveline axes.

Represented by Inertia blocks, rotating bodies with inertias are rigidly attached to and
rotate with their axes. Represented by Mass blocks, translating bodies with masses are
rigidly attached to and translate along their axes. A single connection line or a set of
branched connection lines represents either rotational or translational motion and must
be connected to either rotational or translational ports.

Driveline Axes as Fundamental Degrees of Freedom — Mechanical Ports

A connection line anchored by physical network connector ports represents an
idealized driveline axis. The connection line enforces the constraint that the two
connected driveline components rotate or translate at the same angular or linear velocity,
respectively.

You measure the angular or linear velocity of an axis with an Ideal Rotational Motion
Sensor or Ideal Translational Motion Sensor block.

 Driveline Degrees of Freedom

16-39

Defining Relative and Absolute Angles and Positions

Relative angle or position is sometimes necessary to compute internally generated
torques or forces between pairs of axes (see “Define Connected Degrees of Freedom” on
page 16-41). To determine a relative angle or position, a motion sensor block integrates
the relative angular or linear velocity of the pair of axes and adds the result to the initial
relative angle or position specified in the block dialog box.

You can define an absolute rotation angle or translation position for a single axis when
you measure its motion with a motion sensor, connecting the other physical connection
port of the sensor to a Mechanical Rotational Reference or Mechanical Translational
Reference. The sensor defines an absolute angle or position by integrating the velocity of
the axis and adding the absolute reference angle or position that you provide in the
motion sensor dialog box.

Rotating Inertias and Translating Masses Attached to Driveline Axes

You cannot subject a driveline connection line, by itself, to any torques or forces, because
it lacks inertia or mass. The other basic element to construct a functioning driveline
model is one or more Inertia blocks, one or more Mass blocks, or both. In a real
mechanical system, the spinning (or sliding) bodies carry both inertia (or mass) and DoFs.

You attach Inertias and Masses to mechanical connection lines by branching the lines.
The attached inertias or masses are subject to whatever torque or force is transmitted by
the connection line. The connection line imposes the constraint that everything attached
to a single line must be spinning or sliding at the same velocity.

16 Analyzing Driveline Models and Simulations

16-40

Driveline Axis Branching Rules and Constraints

You can branch connection lines. You can connect the end of any branch of a driveline
connection line to a mechanical conserving connection port only. A set of unbroken,
branched connection lines represents a single DoF.

Branched Connection Lines and Angular Velocity Constraints

Define Connected Degrees of Freedom
You can connect two independent driveline axes, representing two independent degrees
of freedom (DoFs), by an internal dynamic element. A dynamic element generates a
torque or force from the relative angle, position, or motion of the two axes. This torque or
force acts between the two axes, which remain independent DoFs, and which transmit the
torque or force to their respective attached inertias or masses.

Dynamic Elements — Internal Torque and Force Generation

Apart from gears, most of the Simscape Driveline library blocks are dynamic elements, as
are the mechanical rotational and translational blocks of the Simscape Foundation library.
These blocks generate internal torques and forces. On a block with two mechanical
conserving ports, a single torque or force is applied with positive sign to one axis and
negative sign to the other axis. In this figure, torque is applied equally and oppositely to
the rod and case axes of the Torsional Spring-Damper.

 Driveline Degrees of Freedom

16-41

On blocks with more than two mechanical conserving ports, the total torques or forces
flowing in and out of the block still sum to zero, but the torque or force is divided among
the ports in a more complex way that depends on the driveline dynamics.

Clutch and Clutch-Like Elements — Conditional Connections

A clutch or clutch-like element is a conditional or dynamic constraint.

If unlocked, a clutch connects two driveline axes and can impose a relative torque
between them, leaving the two axes independent. The unlocked clutch is either
unengaged, imposing no torque at all; or engaged, imposing kinetic friction as a function
of the relative velocity of the two connected axes.

If a clutch locks and applies only static friction between the two connected axes, the two
axes are no longer independent. Instead, they act as a single axis, spinning at the same
rate. See “Define Constrained Degrees of Freedom” on page 16-42.

Several other, clutch-like blocks also have locking and unlocking Coulomb friction:

• Torsional Spring-Damper
• Loaded-Contact Rotational Friction and Loaded-Contact Translational Friction

Define Constrained Degrees of Freedom
Certain driveline elements couple driveline axes in a way that eliminates their freedom to
move independently. Such elements impose constraints on the motions of the connected
axes. A constrained axis is no longer independent of other axes and does not count toward
the total net or independent motions of the driveline. Such constraints remove
independent degrees of freedom (DoFs) from the system.

Not all constraints are independent. Closing branched connection lines into loops makes
some of the constraints within the loops redundant. The number of effective or
independent constraints is the number of constraints arising from blocks minus the
number of independent closed driveline connection line loops.

16 Analyzing Driveline Models and Simulations

16-42

Except for clutches and clutch-like elements, driveline constraints are unconditional or
static constraints; that is, unchanging over the simulation.

Locking a Driveline Axis

Connecting a driveline connection line to a Mechanical Rotational Reference or
Mechanical Translational Reference block freezes the motion of the corresponding
driveline axis. It cannot move, and its angular or linear velocity is constrained to be zero
during a simulation. Such an axis has no associated independent DoF.

Locking Two Driveline Axes Together with a Clutch or Clutch-Like Element

As long as the conditions for locking are valid, a locked clutch or clutch-like element
constrains the two connected driveline axes to spin or slide together. The two axes remain
distinct, but only one represents an independent DoF. The other is dependent.

Even if it continues to apply kinetic friction between the axes, an unlocked clutch or
clutch-like element no longer imposes a constraint. Instead, it acts as a dynamic element.
See “Define Connected Degrees of Freedom” on page 16-41.

Coupling Driveline Axes with Gears

A gear coupling between two or more driveline axes reduces the independent DoFs of the
driveline by imposing constraints. The nature of those constraints depends on the gear

 Driveline Degrees of Freedom

16-43

that you use. Gear blocks with two connected axes impose one such constraint and reduce
the two axes to a single independent DoF.

Multiaxis gears impose more than one constraint. For example, a planetary gear imposes
two constraints on three axes, reducing the axes to one independent DoF. (This count
does not include the fourth, internal DoF, the planetary wheel, which is not connected to
an axis with a mechanical port.)

Closed Loops, Effective Constraints, and Constraint Consistency

The actual constraint count to determine the number of DoFs is the number of effective or
independent constraints. When connection lines form closed loops, take extra care in
counting constraints in a driveline diagram. The presence of closed loops in a diagram
reduces the effective constraint count by rendering some of the constraints redundant:

Nconstr = Nbconstr – Nloop

Nconstr Number of independent constraints
Nbconstr Number of constraints from blocks
Nloop Number of independent loops

You can reliably count the number of independent loops by counting the fundamental
loops. Fundamental loops have no subloops. You can trace a fundamental loop with only
one path. By counting only fundamental loops, you avoid overcounting loops that overlap.

16 Analyzing Driveline Models and Simulations

16-44

For example, this diagram has two independent loops.

In this diagram, you can draw three loops: two inner loops, left and right, and the outer
loop. The outer loop encompasses both inner loops.

There are two independent loops in this diagram, because only two are fundamental. The
outer loop is not fundamental.

Consistency of Constraints

As long as all the velocities constrained by line branch points are equal over the whole
loop, a closed loop renders redundant one of the constraints contained within it. (See
“Driveline Axis Branching Rules and Constraints” on page 16-41.) The velocities not
directly connected by lines must also be consistent if, for example, they are transferred
through gears.

 Driveline Degrees of Freedom

16-45

If the velocities along a closed loop cannot be made consistent, the driveline is
overconstrained and cannot move.

Actuate, Sense, and Terminate Degrees of Freedom
You can use Simscape Driveline and related blocks with only one driveline connector port

 to originate or terminate a physical connection line. Terminating a connection line
limits the DoF.

Such blocks include:

• Inertia and Mass, which accept torque and force and respond with acceleration.
• Mechanical Rotational Reference and Mechanical Translational Reference, which

ground DoFs to zero velocity.
• Vehicle Body, which implicitly connects the driveline to ground.

These blocks do not have to end a connection line, but can instead be branched off a
connection line.

Directionality of Degrees of Freedom

Driveline connection lines have no inherent directionality. The direction of motion and
torque flow is determined by the driveline dynamics when you simulate a model.

Effect of Torque and Force Actuation on Degrees of Freedom

Connecting an Ideal Torque Source or Ideal Force Source into a driveline connection line
adds the torque or force specified by a physical signal input into that driveline axis. Such
an actuation has no effect on the number of system DoFs. The driveline axes transmit
torques and forces to their connected Inertias and Masses. The driveline is free to
respond to these imposed torques or forces. The motion is simulated by integrating the
driveline accelerations (a result of the imposed torques and forces) to obtain the driveline
velocities.

Effect of Motion Actuation on Degrees of Freedom

Connecting an Ideal Angular Velocity Source or Ideal Translational Velocity Source to a
driveline axis removes the freedom of that axis to respond to torques or forces. Instead, it
specifies the axis motion during the simulation from the actuating physical signal input.
Unlike torque actuation, motion actuation removes an independent DoF from the system.

16 Analyzing Driveline Models and Simulations

16-46

For more information about driveline actuation with torques, forces, and motions, see
“Driveline Actuation”.

Count Independent Degrees of Freedom
To determine the number of independent degrees of freedom (DoFs) in your driveline:

1 Count all the continuous, unbroken driveline connection lines (grouping connected
sets of branched lines) in the Simscape Driveline portion of your model diagram. Call
the total of such lines NCL.

These lines connect two driveline connector ports or terminate on one mechanical
connector port . For details, see “Define Fundamental Degrees of Freedom” on page
16-39 and “Actuate, Sense, and Terminate Degrees of Freedom” on page 16-46.

2 Count all the constraints arising from blocks that impose constraints on their
connected driveline axes. Call the total of such constraints Nbconstr.

Usually, each such block imposes one constraint, but complex gears impose more
than one. For details, see “Define Constrained Degrees of Freedom” on page 16-42.

3 Count the number of independent loops, Nloop. The effective number of constraints is
Nconstr = Nbconstr – Nloop. For details, see “Closed Loops, Effective Constraints, and
Constraint Consistency” on page 16-44.

4 Count all the motion actuations in your driveline, by counting each motion source
block. Call the total of such motion actuations Nmact. For details, see “Actuate, Sense,
and Terminate Degrees of Freedom” on page 16-46.

The number NDoF of independent DoFs in your driveline is:

NDoF = NCL – Nconstr – Nmact = NCL – [Nbconstr – Nloop] – Nmact

A necessary (although not sufficient) condition for driveline motion and successful
driveline simulation is that NDoF is positive. Count rotational and translational DoFs
separately.

Conditional Degrees of Freedom with Clutches and Clutch-Like Elements

Unlike other driveline components, clutches, and clutch-like elements can undergo a
discontinuous state change during a simulation. In general, the number of independent
DoFs of a driveline is not constant during its motion. Each state change of one or more
clutches changes the independent DoF count. Taken as a whole, different collective states

 Driveline Degrees of Freedom

16-47

of the clutches of a driveline can have different total net DoFs. To understand a driveline
completely, examine each possible collective state of its clutch states to identify its
independent DoFs and possibly invalid configurations.

Count Degrees of Freedom in a Simple Driveline with a Clutch
Consider the two-speed transmission model sdl_transmission_2spd.

Simple Transmission

This system has five apparent DoFs, represented by these driveline axes:

• Branched axis with the Inertia Drive Shaft block
• Branched axis with the Inertia Output Shaft block
• Axis connecting the high gear clutch block (the clutch for the high clutch schedule) to

the Gear High block
• Axis connecting the low gear clutch block (the clutch for the low clutch schedule) to

Gear Low block

16 Analyzing Driveline Models and Simulations

16-48

• Axis connecting the Clutch Brake block to the Mechanical Rotational Reference block
(rotational ground)

There is an apparent closed loop formed by the gear blocks and gear clutch blocks. This
loop is real only if both gear clutch blocks are locked.

The actual number of independent DoFs depends on the state of the clutches. The model
has no motion sources, so we need consider only gears and clutches as constraints:

• The two gears blocks are always acting, therefore yielding two ever-present
constraints.

• The fifth axis is always connected to the housing (rotational ground).

These three constraints reduce five DoFs to two DoFs.

Now consider the clutches.

• Consider first the case where the Clutch Brake block is disabled (free).

• If both the high gear clutch and low gear clutch blocks are unlocked, the system
has two independent DoFs, one on the left of the gear clutch blocks and the other
between the gear clutch blocks and the Clutch Brake block.

• If one of these gear clutch blocks is locked, the additional constraint reduces the
system to one independent DoF, everything to the left of the Clutch Brake block.
(The clutch control schedule is set up to prevent both of these clutch blocks from
being locked at the same time.)

• If the Clutch Brake block is enabled, the clutch control schedule keeps the two gear
clutch blocks disabled.

• If the Clutch Brake block is unlocked, the driveline has two independent DoFs: to
the left of the gear clutch blocks and between the gear clutch blocks and the
Clutch Brake block.

• If the Clutch Brake block is locked, the system is reduced to one DoF, to the left of
the gear clutch blocks. Everything to the right of the gear clutch blocks is locked to
the housing.

This table and abstract diagram summarize the possibilities available in this model.

 Driveline Degrees of Freedom

16-49

Brake Enabling Clutch Locking Independent DoFs
Brake disabled Both gear clutch

blocks unlocked
Two: On the left and on the right of the gear
clutch blocks

One gear clutch block
locked

One: On the left of the Clutch Brake block

Brake enabled Clutch Brake block
unlocked

Two: On the left and on the right of the gear
clutch blocks

Clutch Brake block
locked

One: On the left of the gear clutch blocks

Degrees of Freedom in the Simple Transmission

Nonphysical Configurations

The clutch schedule design implemented in the Clutch Schedule subsystem excludes
nonphysical configurations. It is worth considering them anyway, for the sake of a
complete understanding of driveline design. For more information about clutch issues,
see “Troubleshoot Driveline Modeling and Simulation Issues” on page 18-2 and
“Modeling Transmissions” on page 9-7.

Both Gear Clutches Locked, Clutch Brake Unlocked

This configuration creates a conflict of DoFs and reduces the independent DoFs to one.
The driveline axis to the right of the gear clutch blocks tries to spin at two different rates,
as required by two different gear ratios. Two locked clutches enforce two additional
constraints on the two remaining DoFs, but form a closed loop, nominally leaving one

16 Analyzing Driveline Models and Simulations

16-50

freedom in the mechanism. Because of the DoF conflict, attempting to simulate such a
configuration leads to a Simscape Driveline error.

If the two Gears had identical gear ratios, the DoFs would not conflict, and the simulation
would run without error.

One Gear Clutch Locked, Clutch Brake Locked

This configuration also creates a conflict of DoFs and yields zero DoFs. The two locked
clutches enforce two additional constraints on the two remaining DoFs and leave no
freedom in the mechanism. Driven by the driveline axis to the left, the driveline axis
between the gear clutch blocks tries to spin but finds itself locked to the Mechanical
Rotational Reference. Attempting to simulate such a configuration leads to a Simscape
Driveline error.

Both Gear Clutches Locked, Clutch Brake Locked

This configuration is also overconstrained. Three locked clutches enforce two effective
constraints on the remaining two DoFs (after taking into account the closed loop) and
yield NDoF = 0. In addition, the driveline axis to the right of the gear clutch blocks tries to
spin at two different nonzero rates, while remaining locked to the Mechanical Rotational
Reference, creating two distinct DoF conflicts.

 Driveline Degrees of Freedom

16-51

Driveline States — Effect of Clutches
In this section...
“Driveline States and Degrees of Freedom” on page 16-52
“Find and Use Driveline States” on page 16-53

Driveline States and Degrees of Freedom
It is best to have some familiarity with advanced Simulink modeling techniques before
using this section. For more information on driveline degrees of freedom, see “Driveline
Degrees of Freedom” on page 16-38.

Simulink and Simscape represent driveline degrees of freedom (DoFs) and other
information about the dynamics of a model with states. The driveline states are a subset
of the total states of the model. Although the number of independent driveline states in a
model is equal to the number of independent DoFs (with all clutches unlocked), the
driveline states in general are linear combinations of the velocities, not the velocities of
particular driveline axes. Before you simulate a model, this DoF-to-state transformation is
not known.

You can extract state and model output data from your simulation. In the Model
Configuration Parameters dialog box, select the appropriate check boxes in the Data
Import/Export pane. The default state and output vectors are xout and yout,
respectively.

Discontinuous Clutch State Changes

In part, the overall state of the driveline is the set of all its clutch states. Because clutches
are dynamic constraints, the nature of the driveline states in a model with clutches and
clutch-like elements can change during simulation. When a clutch locks, two independent
driveline states become dependent on one another.

For software to design and analyze transitions among discontinuous states such as those
found in clutches and transmissions, see .

Inverse Dynamics

State information is also useful for analyzing the inverse dynamics of a driveline. Often,
you apply torques and forces to a driveline in forward dynamics and then determine the

16 Analyzing Driveline Models and Simulations

16-52

motions. Inverse dynamics means specifying motions to determine what torques and
forces produce those motions.

If you motion-actuate some parts of your driveline instead, those axes and the equivalent
states are no longer independent. If you want outputs from these axes, measure the
torques and forces flowing along them. Knowing these torques and forces is the starting
point of inverse dynamic analysis.

Find and Use Driveline States
This section explains how you locate and use Simscape Driveline states.

Locating Driveline States in Simulink

Your driveline model consists of a mixture of Simscape Driveline, Simscape, and ordinary
Simulink blocks. In general, a model has Simulink states associated with the Simulink
blocks. The Simscape Driveline and Simscape states of a single driveline system are
associated with the Solver Configuration block of that driveline.

You can list all model states with the Simulink
Simulink.BlockDiagram.getInitialState method:

1 Open a model. In this example, use sdl_gear as an example.
2 At the command line, enter:

sigt = Simulink.BlockDiagram.getInitialState('sdl_gear');
sigt.time
sigt.signals

The Simulink.BlockDiagram.getInitialState method initializes the model at zero
time and captures the model states within the .signals structure. This list is the total
set of states, not just the independent states. The Simscape and driveline states are a
subset of the total states.

Trimming and Linearization — Clutch States

An important part of analyzing a driveline system is finding stable steady states of motion
and understanding how the driveline responds to small changes in inputs, such as
changes to initial conditions or to the applied forces and torques. Trimming and
linearization are the formal steps of such an analysis.

If you implement clutch state changes in your simulation, trimming requires that you start
by specifying which clutches are locked and unlocked. The trimming procedure then

 Driveline States — Effect of Clutches

16-53

determines the state of continuous motion. During linearization, simulation starts with the
clutch states that you specify and iterates to find a consistent state of all clutches. It then
implements the perturbation of continuous states, holding the clutch states fixed.

For more information about trimming and linearizing Simscape models, see “Finding an
Operating Point” (Simscape) and “Linearizing at an Operating Point” (Simscape).

16 Analyzing Driveline Models and Simulations

16-54

How Simscape Driveline Simulates a Drivetrain System
In this section...
“About Simscape Driveline and Simscape Simulation” on page 16-55
“Clutch State Determination” on page 16-55

About Simscape Driveline and Simscape Simulation
Apart from clutches and clutch-like elements, Simscape Driveline simulation is a special
case of Simscape simulation.

• For information on clutches, degrees of freedom, and states, see “Driveline Degrees of
Freedom” on page 16-38 and “Driveline States — Effect of Clutches” on page 16-52.

• For information on fixing simulation errors, see “Troubleshoot Driveline Modeling and
Simulation Issues” on page 18-2.

• On how Simscape models work, see:

• “How Simscape Models Represent Physical Systems” (Simscape)
• “How Simscape Simulation Works” (Simscape)

Clutch State Determination
During simulation, Simscape Driveline software checks the clutch and clutch-like blocks
in your model for locking and unlocking events. If a locked clutch meets the criteria for
unlocking, or an unlocked clutch the criteria for locking, the respective clutch states
change.

If one or more clutch and clutch-like constraints change, the driveline states are
repartitioned into new sets of dependent and independent states. The repartitioning
requires a partial reinitialization of the driveline that preserves the state of the driveline
before the clutch changes, except for the subset of constraints and states affected by the
clutch transitions.

 How Simscape Driveline Simulates a Drivetrain System

16-55

Model Thermal Losses in Driveline Components
In this section...
“Thermal Ports” on page 16-56
“Thermal-Modeling Parameters” on page 16-57
“Model Thermal Losses for a Simple Gear” on page 16-57

Thermal modeling provides data that helps you to design efficiency and thermal
protection into your system. Certain blocks in the Simscape Driveline Brakes & Detents,
Clutches, and Gears libraries have thermal variants that allow you to determine how heat
generation affects the efficiency and temperature of driveline components. For example,
the Simple Gear block, which models a gear of base and follower wheels, has a thermal
variant that can simulate the heat generated by meshing losses. Selecting a thermal
variant for a block adds a thermal port to the block and enables the associated thermal-
modeling parameters.

Thermal Ports
Thermal ports are physical conserving ports in the Simscape thermal domain. You can
model thermal effects like heat exchange and insulation by connecting blocks, from other
Simscape products, that use the thermal domain to the thermal ports on Simscape
Driveline thermal variants.

Thermal ports are associated with temperature and heat flow which are the Across and
Through variables of the Simscape thermal domain. To measure thermal variables, you
can use one or both of these methods:

1 Log simulation data using a Simscape logging node. View the data using the
sscexplore function.

2 Add a sensor from the Simscape > Foundation Library > Thermal > Thermal
Sensors library to your model. To measure temperature, use a parallel-connected
Ideal Temperature Sensor block. To measure heat flow, use a series-connected Ideal
Heat Flow Sensor block.

There are several advantages to using data logging for desktop simulation. Data logging
is less computationally costly than using a gauge block and it allows you to:

• View post-simulation results easily using the Simscape Results Explorer.

16 Analyzing Driveline Models and Simulations

16-56

• Output data easily to the MATLAB Workspace for post-processing analysis.

However, if you use only data logging to measure a variable, you cannot output a
feedback signal for that variable to a control system during simulation as you can when
you use only a sensor to measure the variable. Also, because data logging is not
supported for code generation, you cannot use Simscape data logging when you perform
real-time simulation on target hardware.

Thermal-Modeling Parameters
Thermal-modeling parameters are device-specific characteristics that determine how
thermal dynamics affect device temperature and performance during simulation.

For some blocks, the default variant includes requisite parameters for simulating thermal
dynamics. For such blocks, parameter dimensions change when you select a thermal
variant. For example, to parameterize meshing losses based on a constant efficiency
friction model for the default variant of the Simple Gear block, you specify the Efficiency
parameter using a scalar value. If you select a thermal variant for the Simple Gear block,
you must use a vector quantity to specify the Efficiency parameter.

Selecting a thermal variant enables additional thermal-modeling parameters. For
example, selecting the thermal variant of the Simple Gear block enables the
Temperature parameter. To determine the extent of thermal losses, the block performs a
table lookup based on the values that specified for the Efficiency and Temperature
parameters.

Model Thermal Losses for a Simple Gear
This example shows how to enable a thermal port, parameterize a thermal variant, and
analyze the results of a simulation that models thermal losses.

Measure Load-Dependent Efficiency

1 Open the model. At the MATLAB command prompt, enter

sdl_gear_efficiency
2 Examine the parameters for the Gear block.

For Meshing Losses, the Friction model is set to Load-dependent efficiency.
The Nominal output torque is 150 N*m and the Efficiency at nominal output
torque is 0.8.

 Model Thermal Losses in Driveline Components

16-57

3 To simulate the model and plot gearbox efficiency, in the model window, click Plot
efficiency.

The efficiency at the nominal point exactly matches the parameter values in the
block. However, the efficiency is dependent only on the torque. Temperature does not
factor into the efficiency calculation.

Use a Thermal Variant for the Gear Block

To include temperature as a factor in the efficiency calculation, select a thermal variant
for the gear block.

1 Right-click the Gear block and, from the context menu, select Simscape > Block
choices. Select Show thermal port.

16 Analyzing Driveline Models and Simulations

16-58

2 Parameterize the thermal variant. If the block dialog box is open, close and then open
it to make the thermal parameters visible. For the Meshing Losses parameters:

a Set Friction Model to Temperature and load-dependent efficiency.
b For Temperature, specify [280 400 500].
c For Efficiency matrix, specify [0.65 0.65 0.7; 0.7 0.7 0.75; 0.75

0.75 0.8].
3 For the Thermal Port > Initial Temperature parameter, specify 320.

Add Thermal Library Blocks

To model heat transfer, add blocks from the Simscape Foundation Thermal library.

1 Add a block that represents heat flow between the gear and the environment. Open
the Simulink Library Browser. From the Simscape > Foundation Library >
Thermal > Thermal Elements library, add a Conductive Heat Transfer block to the
model.

2 Add a block that represents a thermal reference point. Also from the Thermal
Elements library, add a Thermal Reference block to the model.

3 Add blocks for modeling the ambient temperature as a constant, ideal source of
thermal energy.

• From the Simscape > Foundation Library > Thermal > Thermal Sources
library, add an Controlled Temperature Source block.

• From the Simscape > Foundation Library > Physical Signals > Sources
library, add a PS Constant block. Specify a value of 320 for the PS Constant block.

4 Arrange and connect the blocks as shown in the figure.

 Model Thermal Losses in Driveline Components

16-59

Measure Temperature and Load-Dependent Efficiency

Evaluate efficiency as a function of both the load torque and the gear temperature.

1 Simulate the model.
2 To plot gearbox efficiency, in the model window, click Plot efficiency. Zoom out for a

better view of the efficiency curve.

16 Analyzing Driveline Models and Simulations

16-60

The efficiency peaks at 8.5 seconds when the magnitude of the load torque is
approximately 33% of its maximal value. The efficiency is no longer dependent only
on the load torque.

3 To view the data for the dissipated power and for gear temperature:

a In the model window, click Explore simulation results.
b In the node tree window, expand the Gear > simple_gear_model nodes.
c CTRL + click the power_dissipated and temperature nodes.

 Model Thermal Losses in Driveline Components

16-61

16 Analyzing Driveline Models and Simulations

16-62

As the magnitudes of the torque load and temperature increase during the first half
of the simulation, so does the amount of power that is dissipated. The amount of
power that is dissipated decreases in the second half of the simulation due to the
decrease in the torque load. However, the temperature of the gear continues to rise,
as does the efficiency due to the vector specified for the Temperature parameter.
The efficiency depends on both the load torque and the gear temperature.

See Also
Simple Gear

More About
• “About Simulation Data Logging” (Simscape)

 See Also

16-63

Simscape Driveline Limitations
In this section...
“Simscape Driveline and Simulink Limitations” on page 16-64
“Additional Simscape Driveline Limitations” on page 16-64

Simscape Driveline and Simulink Limitations
Simscape Driveline software shares the limitations of Simscape software concerning
Simulink features and tools. For Simscape limitations, see “Limitations” (Simscape).

Additional Simscape Driveline Limitations
Simscape Driveline software also has additional limitations of its own.

Index-2 Differential-Algebraic Equations from Variable Ratio Transmission

If you use the Variable Ratio Transmission block in your model, you might make your
simulation slower or less accurate, depending on where the variable ratio comes from. A
physical signal input defines the variable ratio as a function of time.

• If this time function is defined autonomously, independently of the dynamics of the
physical system, the variable ratio is not a simulation problem.

• If this time function is defined in terms of feedback from the physical system itself, the
variable ratio makes the physical-mathematical model into an Index-2 differential-
algebraic equation (DAE) system. Its solution requires two differentiations of
constraints and results in simulation warnings or errors.

To avoid this problem, do one of the following:

• Remove the Variable Ratio Transmission blocks that use physical system feedback to
define their variable ratios.

• Delay the feedback signal, so that the feedback is no longer instantaneous.

16 Analyzing Driveline Models and Simulations

16-64

Real-Time Simulation

17

Prepare Simscape Driveline Models for Real-Time
Simulation Using Simscape Checks

If you have a Simulink Real-Time license, you can optimize your model for real-time
execution using the Execute real-time application activity mode in the Simulink
Performance Advisor. This mode includes several checks specific to physical models. For
example, the Simulink Performance Advisor identifies Simscape Solver Configuration
blocks with settings that are suboptimal for real-time simulation. For optimal results,
Solver Configuration blocks should have the Use local solver and Use fixed-cost
runtime consistency iterations options selected.

The checks are organized into folders. You can use the checks in the Simscape checks
folder for all physical models. Subfolders contain checks that target blocks from Simscape
Driveline and other add-on products such as Simscape Electrical.

Before you run the checks, use the processes described in “Real-Time Model Preparation
Workflow” (Simscape), “Real-Time Simulation Workflow” (Simscape), and “Hardware-In-
The-Loop Simulation Workflow” (Simscape).

To run the Simulink Real-Time Performance Advisor Checks:

1 In the Simulink Editor menu bar, select Analysis > Performance Tools >
Performance Advisor.

2 In the Performance Advisor window, under Activity, select Execute real-time
application.

3 In the left pane, expand the Real-Time folder, and then the Simscape checks folder.
4 Run the top-level Simscape checks and the Simscape Driveline checks. If your model

contains blocks from other add-on products, also run the checks in the subfolder
corresponding to that product.

See Also

More About
• “Model Preparation Objectives” (Simscape)
• “Real-Time Model Preparation Workflow” (Simscape)

17 Real-Time Simulation

17-2

• “Real-Time Simulation Workflow” (Simscape)
• “Use Performance Advisor to Improve Simulation Efficiency” (Simulink)

 See Also

17-3

Troubleshoot Driveline Simulation
Issues

• “Troubleshoot Driveline Modeling and Simulation Issues” on page 18-2
• “Troubleshoot Overconstrained and Conflicting Degrees of Freedom” on page 18-3
• “Troubleshoot Clutch and Transmission Errors” on page 18-4
• “Troubleshoot Inconsistent Initial Conditions” on page 18-5
• “Troubleshoot Pulley Network Issues” on page 18-6
• “Troubleshoot Engine Issues” on page 18-7

18

Troubleshoot Driveline Modeling and Simulation Issues
Various errors can cause your Simscape Driveline simulation to stop before completion.
Some of these errors arise from nonphysical configurations of the driveline. To learn how
to correct such issues, see:

• “Troubleshoot Overconstrained and Conflicting Degrees of Freedom” on page 18-3
• “Troubleshoot Clutch and Transmission Errors” on page 18-4
• “Troubleshoot Inconsistent Initial Conditions” on page 18-5
• “Troubleshoot Pulley Network Issues” on page 18-6
• “Troubleshoot Engine Issues” on page 18-7

18 Troubleshoot Driveline Simulation Issues

18-2

Troubleshoot Overconstrained and Conflicting Degrees
of Freedom

Analyzing and counting the driveline degrees of freedom (DoFs) are essential to fixing one
type of simulation error. For more information, see “Driveline Degrees of Freedom” on
page 16-38.

To run successfully, your driveline simulation must have a positive number of independent
DoFs, from the start to the end of the simulation. Furthermore, the model DoFs must not
conflict with each other.

If you encounter a simulation error where the driveline cannot move, check whether the
number NDoF of independent DoFs is positive, and whether the DoFs do not conflict with
each other.

Checking the Number of DoFs
If NDoF is not positive:

• Remove one or more constraining blocks, such as Gears, Clutches or clutch-like
elements, and Mechanical Rotational References.

• Remove one or more Ideal Angular Velocity Source blocks.

Try one or both of these steps repeatedly until you locate the origin or origins of the
simulation failure and make NDoF positive.

Checking the Consistency of DoFs
Consider also whether two or more DoFs are in conflict. For example, check whether two
velocity sources are trying to move a single DoF in two different ways. Such a
configuration creates a motion conflict and leads to a simulation error.

 Troubleshoot Overconstrained and Conflicting Degrees of Freedom

18-3

Troubleshoot Clutch and Transmission Errors
Faulty clutch and transmission configurations generate many driveline motion failures
and usually arise from DoF conflicts and errors. Clutches impose conditional or dynamic
constraints.

To avoid or solve such problems, pay close attention to the collective state of your
clutches, including clutches occurring inside transmission subsystems. The key to
avoiding errors with transmissions is to work out and implement a complete and
consistent clutch schedule.

Common mistakes include:

• Locking too many clutches simultaneously, leading to redundant dynamic constraints
and overconstrained (not enough) DoFs.

• Locking conflicts among clutches, leading to nonredundant but still conflicting
constraints.

Example: Locking one clutch locks one driveline axis to another. You could also lock
the first driveline axis simultaneously to a third axis with another clutch. If the second
and third axes cannot turn at the same velocity, these DoFs are in conflict.

• Locking too few clutches simultaneously. This error does not overconstrain DoFs or
put them in conflict. However, it puts a transmission into a neutral state where it
cannot transmit any torque or motion.

For information about adjusting simulation for clutches, see “Optimize Simulation of
Clutches” on page 16-4 and “Transmissions with Gear Ratios and Clutch Schedules”.

18 Troubleshoot Driveline Simulation Issues

18-4

Troubleshoot Inconsistent Initial Conditions
Like motion sources, initial conditions can cause motion conflicts. Unlike motion sources,
they do not impose constraints or remove DoFs from the driveline, because they act only
at the start of the simulation. However, under certain circumstances, initial conditions
can cause errors when you start the simulation:

• Initial conditions conflict with one another.

Example: You couple two driveline axes through a Gear with a gear ratio of 2. The
base axis must spin twice as fast as the follower, in the same direction. If you actuate
the base with a velocity source, and the follower is connected to an inertia with initial
velocity not set to half the initial base velocity, the simulation stops with an error.

• Initial conditions conflict with motion sources. When the simulation starts, the signal
controlling a velocity source acting on an axis and the initial velocity value specified
on an Inertia or a Mass attached to that axis must agree. Analogous requirements hold
for velocities transformed by gear couplings.

Regardless of how you set the initial conditions of your driveline axes, the complete set of
initial conditions must be consistent with itself. Driveline connection lines satisfying
angular velocity constraints (for example, branched lines, or lines in closed loops) must
have the same initial angular velocities.

 Troubleshoot Inconsistent Initial Conditions

18-5

Troubleshoot Pulley Network Issues
Like real-world pulleys, Simscape Driveline pulley blocks rely on belt tension and inertia
for motion. To fix a pulley network in your model that is not acting as expected:

• Make sure that there are no conflicts in the settings for the belt direction. For more
information, see “Best Practices for Modeling Pulley Networks” on page 6-2.

• Ensure that there is inertia in the system. If there is no inertia, add it by including an
Inertia block from the Simscape Rotational Elements library, by adding inertia to a
downstream component, or including inertia in one of the pulleys. As needed, specify
an initial velocity for the inertia.

• Compare the number of pulley pairs to the number of tensioners. If the number of
tensioners is not equal to either the number of pulley pairs or the number of pulley
pairs less one, add tensioners. For example, if there are five pulley pairs, include at
least four tensioners. Use spring and damper blocks to model the tensioners.

See Also
Belt Drive | Belt Pulley | Inertia | Inertia | Rope Drum | Rotational Free End | Translational
Spring | Variable Inertia | Worm Gear

Related Examples
• “Power Window System”

More About
• “Best Practices for Modeling Pulley Networks” on page 6-2

18 Troubleshoot Driveline Simulation Issues

18-6

Troubleshoot Engine Issues
Like real-world engines, blocks from the Simscape Driveline Engines library rely on the
inertia from each cycle to initiate the next cycle. If a piston- or engine-driven network in
your model is not responding to throttle input, either at the beginning of simulation or
when the engine reaches stall speed, examine the engine output for the simulation. If
there is no engine velocity in response to throttle input, try these engine-startup methods:

• Add initial velocity to the engine block — Specify a nonzero value for the initial
velocity or crank velocity parameter in the engine block settings. Specify a value that
is well above stall speed. Iterate to find the correct solution.

• Add an inertia with initial velocity to the engine network — Add an Inertia block from
the Simscape Rotational Elements library or add inertia to a downstream component,
for example a shaft. Specify an initial velocity using the Variables settings for the
Inertia block or downstream component. Set the target velocity to High Priority.

• Add an electric starter motor — Use a starter motor, such as the DC motor in the
“Permanent Magnet DC Motor” (Simscape) example, to initiate engine motion.

If a model that is not giving expected results contains a Piston block with the Pressure
parameterization set to By crank angle and throttle and a Pressure matrix
(gauge) that indicates zero velocity, include an external inertia with initial angular
velocity.

See Also
Generic Engine | Inertia | Piston | Piston Engine

Related Examples
• “Permanent Magnet DC Motor” (Simscape)

More About
• “Troubleshoot Inconsistent Initial Conditions” on page 18-5

 Troubleshoot Engine Issues

18-7

